【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.為曲線上的動點(diǎn),點(diǎn)在射線上,且滿足.

(Ⅰ)求點(diǎn)的軌跡的直角坐標(biāo)方程;

(Ⅱ)設(shè)軸交于點(diǎn),過點(diǎn)且傾斜角為的直線相交于兩點(diǎn),求的值.

【答案】(Ⅰ);(Ⅱ).

【解析】

(Ⅰ)首先依據(jù)動點(diǎn)的極坐標(biāo)的關(guān)系找到點(diǎn)的極坐標(biāo)方程,再化為直角坐標(biāo)方程;(Ⅱ)首先根據(jù)條件確定直線的參數(shù)方程,依據(jù)參數(shù)的幾何意義,結(jié)合解方程,利用韋達(dá)定理得到解.

(Ⅰ)設(shè)的極坐標(biāo)為的極坐標(biāo)為,

由題設(shè)知.所以

的極坐標(biāo)方程,所以的直角坐標(biāo)方程為.

(Ⅱ)交點(diǎn),所以直線的參數(shù)方程為為參數(shù)),

曲線的直角坐標(biāo)方程,

代入得:,

設(shè)方程兩根為,則分別是對應(yīng)的參數(shù),

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, , ,且 , , .

)求證:平面平面;

)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為α為參數(shù)),將C上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?/span>3倍,得曲線C1.以O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.

1)求C1的極坐標(biāo)方程

2)設(shè)M,NC1上兩點(diǎn),若OMON,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是2017年第一季度五省GDP情況圖,則下列陳述中不正確的是( 。

A.2017年第一季度GDP增速由高到低排位第5的是浙江。

B.與去年同期相比,2017年第一季度的GDP總量實(shí)現(xiàn)了增長.

C.2017年第一季度GDP總量和增速由高到低排位均居同一位的省只有1

D.去年同期河南省的GDP總量不超過4000億元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)某種產(chǎn)品,一條流水線年產(chǎn)量為件,該生產(chǎn)線分為兩段,流水線第一段生產(chǎn)的半成品的質(zhì)量指標(biāo)會影響第二段生產(chǎn)成品的等級,具體見下表:

第一段生產(chǎn)的半成品質(zhì)量指標(biāo)

第二段生產(chǎn)的成品為一等品概率

0.2

0.4

0.6

第二段生產(chǎn)的成品為二等品概率

0.3

0.3

0.3

第二段生產(chǎn)的成品為三等品概率

0.5

0.3

0.1

從第一道生產(chǎn)工序抽樣調(diào)查了件,得到頻率分布直方圖如圖:

若生產(chǎn)一件一等品、二等品、三等品的利潤分別是元、元、元.

(Ⅰ)以各組的中間值估計(jì)為該組半成品的質(zhì)量指標(biāo),估算流水線第一段生產(chǎn)的半成品質(zhì)量指標(biāo)的平均值;

(Ⅱ)將頻率估計(jì)為概率,試估算一條流水線一年能為該公司創(chuàng)造的利潤;

(Ⅲ)現(xiàn)在市面上有一種設(shè)備可以安裝到流水線第一段,價格是萬元,使用壽命是年,安裝這種設(shè)備后,流水線第一段半成品的質(zhì)量指標(biāo)服從正態(tài)分布,且不影響產(chǎn)量.請你幫該公司作出決策,是否要購買該設(shè)備?說明理由.

(參考數(shù)據(jù):,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知斜三棱柱ABCA1B1C1的底面是正三角形,點(diǎn)M、N分別是B1C1A1B1的中點(diǎn),AA1ABBM2,∠A1AB60°

1)求證:BN⊥平面A1B1C1;

2)求二面角A1ABM的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題p:實(shí)數(shù)x滿足x24ax+3a20a0),命題q:實(shí)數(shù)x滿足x25x+60

1)若a1,且pq為真命題,求實(shí)數(shù)x的取值范圍;

2)若pq的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若定義在D上的函數(shù)滿足:對任意,存在常數(shù),都有成立,則稱是D上的有界函數(shù),其中M稱為函數(shù)的上界,已知函數(shù),

求函數(shù)上的值域,判斷函數(shù)上是否為有界函數(shù),并說明理由;

若函數(shù)上是以3為上界的函數(shù),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過橢圓W的左焦點(diǎn)F1作直線l1交橢圓于AB兩點(diǎn),其中A(01),另一條過F1的直線l2交橢圓于C,D兩點(diǎn)(不與A,B重合),且D點(diǎn)不與點(diǎn)0,﹣1重合.過F1x軸的垂線分別交直線AD,BCEG

1)求B點(diǎn)坐標(biāo)和直線l1的方程;

2)比較線段EF1和線段GF1的長度關(guān)系并給出證明.

查看答案和解析>>

同步練習(xí)冊答案