【題目】甲、乙兩家外賣(mài)公司,其送餐員的日工資方案如下:甲公司的底薪80元,每單抽成4元;乙公司無(wú)底薪,40單以?xún)?nèi)(含40單)的部分每單抽成6元,超出40單的部分每單抽成7元,假設(shè)同一公司送餐員一天的送餐單數(shù)相同,現(xiàn)從兩家公司各隨機(jī)抽取一名送餐員,并分別記錄其50天的送餐單數(shù),得到如下頻數(shù)表:

甲公司送餐員送餐單數(shù)頻數(shù)表

送餐單數(shù)

38

39

40

41

42

天數(shù)

10

15

10

10

5

乙公司送餐員送餐單數(shù)頻數(shù)表

送餐單數(shù)

38

39

40

41

42

天數(shù)

5

10

10

20

5

1)現(xiàn)從甲公司記錄的50天中隨機(jī)抽取3天,求這3天送餐單數(shù)都不小于40的概率;

2)若將頻率視為概率,回答下列兩個(gè)問(wèn)題:

①記乙公司送餐員日工資為(單位:元),求的分布列和數(shù)學(xué)期望;

②小王打算到甲、乙兩家公司中的一家應(yīng)聘送餐員,如果僅從日工資的角度考慮,請(qǐng)利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為小王作出選擇,并說(shuō)明理由

【答案】(1).(2)見(jiàn)解析

【解析】試題分析:(1)為古典概型,利用組合數(shù)公式計(jì)算基本事件的總數(shù)和隨機(jī)事件中含有的基本事件的總數(shù)即可.(2)為計(jì)算離散型隨機(jī)變量的分布列和數(shù)學(xué)期望,利用公式計(jì)算即可

(1)記抽取的天送餐單數(shù)都不小于40為事件,則.

(2)①設(shè)乙公司送餐員送餐單數(shù)為

則當(dāng)時(shí), ,當(dāng)時(shí), ,當(dāng)時(shí), ,當(dāng)時(shí), ,當(dāng)時(shí), .

所以的所有可能取值為228,234,240,247,254.故的分布列為:

228

234

240

247

254

所以

②依題意,甲公司送餐員日平均送餐單數(shù)為

所以甲公司送餐員日平均工資為元.

由①得乙公司送餐員日平均工資為241.8元.因?yàn)?/span>,故推薦小王去乙公司應(yīng)聘.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,底面是直角梯形, ,且 ,側(cè)面底面是等邊三角形.

1)求證: ;

2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),(其中

(1)若,討論函數(shù)的單調(diào)性;

(2)若,求證:函數(shù)有唯一的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)調(diào)查了某班全部名同學(xué)參加書(shū)法社團(tuán)和演講社團(tuán)的情況,數(shù)據(jù)如下表:(單位:人)

(1)能否由的把握認(rèn)為參加書(shū)法社團(tuán)和參加演講社團(tuán)有關(guān)?

(附:

當(dāng)時(shí),有的把握說(shuō)事件有關(guān);當(dāng),認(rèn)為事件是無(wú)關(guān)的)

(2)已知既參加書(shū)法社團(tuán)又參加演講社團(tuán)的名同學(xué)中,有名男同學(xué), , , , 名女同學(xué) , .現(xiàn)從這名男同學(xué)和名女同學(xué)中各隨機(jī)選人,求被選中且未被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】質(zhì)檢部門(mén)對(duì)某工廠(chǎng)甲、乙兩個(gè)車(chē)間生產(chǎn)的12個(gè)零件質(zhì)量進(jìn)行檢測(cè).甲、乙兩個(gè)車(chē)間的零件質(zhì)量(單位:克)分布的莖葉圖如圖所示.零件質(zhì)量不超過(guò)20克的為合格.

(1)從甲、乙兩車(chē)間分別隨機(jī)抽取2個(gè)零件,求甲車(chē)間至少一個(gè)零件合格且乙車(chē)間至少一個(gè)零件合格的概率;

(2)質(zhì)檢部門(mén)從甲車(chē)間8個(gè)零件中隨機(jī)抽取4件進(jìn)行檢測(cè),若至少2件合格,檢測(cè)即可通過(guò),若至少3 件合格,檢測(cè)即為良好,求甲車(chē)間在這次檢測(cè)通過(guò)的條件下,獲得檢測(cè)良好的概率;

(3)若從甲、乙兩車(chē)間12個(gè)零件中隨機(jī)抽取2個(gè)零件,用表示乙車(chē)間的零件個(gè)數(shù),求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱柱中, 平面,底面為梯形, , , ,點(diǎn), 分別為 的中點(diǎn).

(Ⅰ)求證: 平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)在線(xiàn)段上是否存在點(diǎn),使與平面所成角的正弦值是,若存在,求的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為了準(zhǔn)確把握市場(chǎng),做好產(chǎn)品計(jì)劃,特對(duì)某產(chǎn)品做了市場(chǎng)調(diào)查:先銷(xiāo)售該產(chǎn)品50天,統(tǒng)計(jì)發(fā)現(xiàn)每天的銷(xiāo)售量分布在內(nèi),且銷(xiāo)售量的分布頻率

.

(Ⅰ)求的值.

(Ⅱ)若銷(xiāo)售量大于等于80,則稱(chēng)該日暢銷(xiāo),其余為滯銷(xiāo),根據(jù)是否暢銷(xiāo)從這50天中用分層抽樣的方法隨機(jī)抽取5天,再?gòu)倪@5天中隨機(jī)抽取2天,求這2天中恰有1天是暢銷(xiāo)日的概率(將頻率視為概率).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知兩個(gè)正方形ABCDDCEF不在同一平面內(nèi),M,N分別為AB,DF的中點(diǎn).

(1)若平面ABCD⊥平面DCEF,求直線(xiàn)MN與平面DCEF所成角的正弦值;

(2)用反證法證明:直線(xiàn)MEBN是兩條異面直線(xiàn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是等差數(shù)列, 是等比數(shù)列,且 .

1)數(shù)列的通項(xiàng)公式;

2)設(shè),求數(shù)列項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案