【題目】如圖,在三棱柱中,底面,,點(diǎn)是的中點(diǎn).
(Ⅰ)求證:;
(Ⅱ)求證:∥平面.
(Ⅲ)設(shè),,在線(xiàn)段上是否存在點(diǎn),使得?若存在,確定點(diǎn)的位置; 若不存在,說(shuō)明理由.
【答案】(Ⅰ)見(jiàn)解析;(Ⅱ)見(jiàn)解析; (Ⅲ)存在,為線(xiàn)段的中點(diǎn),理由略.
【解析】
試題分析:(Ⅰ)通過(guò)證得,且,即可證得平面,即證;
(Ⅱ) 設(shè)與的交點(diǎn)為,連結(jié),因?yàn)?/span>是的中點(diǎn),是的中點(diǎn),由三角形的中位線(xiàn)定理得∥,又由線(xiàn)面平行的判定定理即證∥平面;
(Ⅲ) 在線(xiàn)段上存在點(diǎn),使得,且為線(xiàn)段的中點(diǎn).證明如下:由已知得.
由已知,為線(xiàn)段的中點(diǎn),所以,可得平面.連接.因?yàn)?/span>平面,所以,易證,所以平面,即可得.
試題解析:(Ⅰ)在三棱柱中,因?yàn)?/span>底面,底面,
所以.
又,,
所以平面.
而,
則.
(Ⅱ)設(shè)與的交點(diǎn)為,連結(jié),
因?yàn)?/span>是的中點(diǎn),是的中點(diǎn),
所以∥.
因?yàn)?/span>平面,平面,
所以∥平面.
(Ⅲ)在線(xiàn)段上存在點(diǎn),使得,且為線(xiàn)段的中點(diǎn).
證明如下:因?yàn)?/span>底面,底面,所以.
由已知,為線(xiàn)段的中點(diǎn),
所以.
又,
所以平面.
取線(xiàn)段的中點(diǎn),連接.
因?yàn)?/span>平面,所以.
由已知,由平面幾何知識(shí)可得.
又,所以平面.
又平面,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱柱中, 平面, , , , , 為的中點(diǎn).
(Ⅰ)求四棱錐的體積;
(Ⅱ)設(shè)點(diǎn)在線(xiàn)段上,且直線(xiàn)與平面所成角的正弦值為,求線(xiàn)段的長(zhǎng)度;
(Ⅲ)判斷線(xiàn)段上是否存在一點(diǎn),使得?(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“大眾創(chuàng)業(yè),萬(wàn)眾創(chuàng)新”是李克強(qiáng)總理在本屆政府工作報(bào)告中向全國(guó)人民發(fā)出的口號(hào).某生產(chǎn)企業(yè)積極響應(yīng)號(hào)召,大力研發(fā)新產(chǎn)品,為了對(duì)新研發(fā)的一批產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格試銷(xiāo),得到一組銷(xiāo)售數(shù)據(jù),如下表所示:
(已知, ).
(1)求出的值;
(2)已知變量具有線(xiàn)性相關(guān)關(guān)系,求產(chǎn)品銷(xiāo)量(件)關(guān)于試銷(xiāo)單價(jià)(元)的線(xiàn)性回歸方程;(3)用表示用正確的線(xiàn)性回歸方程得到的與對(duì)應(yīng)的產(chǎn)品銷(xiāo)量的估計(jì)值.當(dāng)銷(xiāo)售數(shù)據(jù)的殘差的絕對(duì)值時(shí),則將銷(xiāo)售數(shù)據(jù)稱(chēng)為一個(gè)“好數(shù)據(jù)”.現(xiàn)從6個(gè)數(shù)據(jù)中任取2個(gè),求抽取的2個(gè)數(shù)據(jù)中至少有1個(gè)是“好數(shù)據(jù)”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)f(x)滿(mǎn)足f(2+x)=f(2﹣x),其圖象開(kāi)口向上,頂點(diǎn)為A,與x軸交于點(diǎn)B(﹣1,0)和C點(diǎn),且△ABC的面積為18.
(1)求此二次函數(shù)的解析式;
(2)若方程f(x)=m(x﹣1)在區(qū)間[0,1]有解,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:直線(xiàn),一個(gè)圓與軸正半軸與軸正半軸都相切,且圓心到直線(xiàn)的距離為.
()求圓的方程.
()是直線(xiàn)上的動(dòng)點(diǎn), , 是圓的兩條切線(xiàn), , 分別為切點(diǎn),求四邊形的面積的最小值.
()圓與軸交點(diǎn)記作,過(guò)作一直線(xiàn)與圓交于, 兩點(diǎn), 中點(diǎn)為,求最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校課題組為了研究學(xué)生的數(shù)學(xué)成績(jī)和物理成績(jī)之間的關(guān)系,隨機(jī)抽取高二年級(jí)20名學(xué)生某次考試成績(jī)(百分制)如表所示:
序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
數(shù)學(xué)成績(jī) | 95 | 75 | 80 | 94 | 92 | 65 | 67 | 84 | 98 | 71 | 67 | 93 | 64 | 78 | 77 | 90 | 57 | 83 | 72 | 83 |
物理成績(jī) | 90 | 63 | 72 | 87 | 91 | 71 | 58 | 82 | 93 | 81 | 77 | 82 | 48 | 85 | 69 | 91 | 61 | 84 | 78 | 86 |
若數(shù)學(xué)成績(jī)90分(含90分)以上為優(yōu)秀,物理成績(jī)85(含85分)以上為優(yōu)秀.有多少把握認(rèn)為學(xué)生的數(shù)學(xué)成績(jī)與物理成績(jī)之間有關(guān)系( )
A.99.5%
B.99.9%
C.97.5%
D.95%
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)滿(mǎn)足對(duì)任意的m,n都有f(m+n)=f(m)+f(n)-1,設(shè)g(x)=f(x)+(a>0,a≠1),g(ln2018)=-2015,則g(ln)=______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】高二年級(jí)有甲、乙、丙三個(gè)班參加社會(huì)實(shí)踐活動(dòng),高二年級(jí)老師要分到各個(gè)班級(jí)帶隊(duì),其中男女老師各一半,每次任選兩個(gè)老師,將其中一個(gè)老師分到甲班,如果這個(gè)老師是男老師,就將另一個(gè)老師分到乙班,否則就分到丙班,重復(fù)上述過(guò)程,直到所有老師都分到班級(jí),則
A. 乙班女老師不多于丙班女老師 B. 乙班男老師不多于丙班男老師
C. 乙班男老師與丙班女老師一樣多 D. 乙班女老師與丙班男老師一樣多
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com