【題目】“大眾創(chuàng)業(yè),萬眾創(chuàng)新”是李克強總理在本屆政府工作報告中向全國人民發(fā)出的口號.某生產(chǎn)企業(yè)積極響應(yīng)號召,大力研發(fā)新產(chǎn)品,為了對新研發(fā)的一批產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格試銷,得到一組銷售數(shù)據(jù),如下表所示:
(已知, ).
(1)求出的值;
(2)已知變量具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(件)關(guān)于試銷單價(元)的線性回歸方程;(3)用表示用正確的線性回歸方程得到的與對應(yīng)的產(chǎn)品銷量的估計值.當銷售數(shù)據(jù)的殘差的絕對值時,則將銷售數(shù)據(jù)稱為一個“好數(shù)據(jù)”.現(xiàn)從6個數(shù)據(jù)中任取2個,求抽取的2個數(shù)據(jù)中至少有1個是“好數(shù)據(jù)”的概率.
【答案】(1);(2);(3).
【解析】試題分析: (1)根據(jù)求解即可;(2)根據(jù)公式分別求出和,代入回歸直線方程即可;(3)分別列舉出滿足題意的“好數(shù)據(jù)”,根據(jù)古典概型的公式代入求解.
試題解析:
(1) ,可求得.
(2),
,
所以所求的線性回歸方程為.
(3)當時, ;當時, ;當時, ;當時, ;當時, ;當時, .
與銷售數(shù)據(jù)對比可知滿足(1,2,…,6)的共有3個“好數(shù)據(jù)”: 、、.
從6個銷售數(shù)據(jù)中任意抽取2個的所有可能結(jié)果有(4,90)(5,84),(4,90)(6,83),(4,90)(7,80),(4,90)(8,75),(4,90)(9,68),(5,84)(6,83),(5,84)(7,80),(5,84)(8,75),(5,84)(9,68),(6,83)(7,80),(6,83)(8,75),(6,83)(9,68),(7,80)(8,75),(7,80)(9,68),(8,75)(9,68)共15種,
其中2個數(shù)據(jù)中至少有一個是“好數(shù)據(jù)”的結(jié)果有(4,90)(5,84),(4,90)(6,83),(4,90)(7,80),(4,90)(8,75),(4,90)(9,68),(5,84)(6,83),(5,84)(8,75),(6,83)(7,80),(6,83)(8,75),(6,83)(9,68),(7,80)(8,75),(8,75)(9,68)共12種,
于是從抽得2個數(shù)據(jù)中至少有一個銷售數(shù)據(jù)中的產(chǎn)品銷量不超過80的概率為.
或
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市城鎮(zhèn)化改革過程中最近五年居民生活水平用水量逐年上升,下表是2011至2015年的統(tǒng)計數(shù)據(jù):
年份 | 2011 | 2012 | 2013 | 2014 | 2015 |
居民生活用水量(萬噸) | 236 | 246 | 257 | 276 | 286 |
(1)利用所給數(shù)據(jù)求年居民生活用水量與年份之間的回歸直線方程y=bx+a;
(2)根據(jù)改革方案,預(yù)計在2020年底城鎮(zhèn)化改革結(jié)束,到時候居民的生活用水量將趨于穩(wěn)定,預(yù)計該城市2023年的居民生活用水量.
參考公式: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】棱臺的三視圖與直觀圖如圖所示.
(1)求證:平面平面;
(2)在線段上是否存在一點,使與平面所成的角的正弦值為?若存在,指出點的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:(x+1)2+y2=20,點B(l,0).點A是圓C上的動點,線段AB的垂直平分線與線段AC交于點P.
(1)求動點P的軌跡C1的方程;
(2)設(shè) ,N為拋物線C2:y=x2上的一動點,過點N作拋物線C2的切線交曲線Cl于P,Q兩點,求△MPQ面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“雙十一”已經(jīng)成為網(wǎng)民們的網(wǎng)購狂歡節(jié),某電子商務(wù)平臺對某市的網(wǎng)民在今年“雙十一”的網(wǎng)購情況進行摸底調(diào)查,用隨機抽樣的方法抽取了100人,其消費金額(百元)的頻率分布直方圖如圖所示:
(1)求網(wǎng)民消費金額的平均值和中位數(shù);
(2)把下表中空格里的數(shù)填上,能否有90%的把握認為網(wǎng)購消費與性別有關(guān);
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, .
(1)若函數(shù)的單調(diào)遞減區(qū)間為,求函數(shù)的圖象在點處的切線方程;
(2)若不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有4個人去參加娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇.為增加趣味性,約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪個游戲,擲出點數(shù)為1或2的人去參加甲游戲,擲出點數(shù)大于2的人去參加乙游戲.
(1)求這4個人中恰有2人去參加甲游戲的概率;
(2)求這4個人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率;
(3)用X,Y分別表示這4個人中去參加甲、乙游戲的人數(shù),記ξ=|X﹣Y|,求隨機變量ξ的分布列與數(shù)學(xué)期望Eξ.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,底面,,點是的中點.
(Ⅰ)求證:;
(Ⅱ)求證:∥平面.
(Ⅲ)設(shè),,在線段上是否存在點,使得?若存在,確定點的位置; 若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù),下列命題中所有正確結(jié)論的序號是______.
①其圖象關(guān)于軸對稱; ②當時,是增函數(shù);當時,是減函數(shù);
③的最小值是; ④在區(qū)間上是增函數(shù);
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com