【題目】棱臺的三視圖與直觀圖如圖所示.
(1)求證:平面平面;
(2)在線段上是否存在一點,使與平面所成的角的正弦值為?若存在,指出點的位置;若不存在,說明理由.
【答案】(1)見解析.(2)在的中點.
【解析】試題分析:(1)首先根據三視圖特征可得平面, 為正方形,所以.再由即可得線面垂直從而得出面面垂直(2)直接建立空間坐標系寫出各點坐標求出法向量,在根據向量的交角公式得出等式求出
解析:(1)根據三視圖可知平面, 為正方形,
所以.
因為平面,所以,
又因為,所以平面.
因為平面,所以平面平面.
(2)以為坐標原點, 所在直線分別為軸建立空間直角坐標系,如圖所示,
根據三視圖可知為邊長為2的正方形, 為邊長為1的正方形,
平面,且.
所以, , , , .
因為在上,所以可設.
因為,所以 .
所以, .
設平面的法向量為,
根據
令,可得,所以.
設與平面所成的角為,
所以 .
所以,即點在的中點位置.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)的單調遞減區(qū)間;
(2)若,求函數(shù)在區(qū)間上的最大值;
(3)若在區(qū)間上恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱柱中, 平面, , , , , 為的中點.
(Ⅰ)求四棱錐的體積;
(Ⅱ)設點在線段上,且直線與平面所成角的正弦值為,求線段的長度;
(Ⅲ)判斷線段上是否存在一點,使得?(結論不要求證明)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某糧庫擬建一個儲糧倉如圖所示,其下部是高為2的圓柱,上部是母線長為2的圓錐,現(xiàn)要設計其底面半徑和上部圓錐的高,若設圓錐的高為,儲糧倉的體積為.
(1)求關于的函數(shù)關系式;(圓周率用表示)
(2)求為何值時,儲糧倉的體積最大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解某商場旅游鞋的日銷售情況,現(xiàn)抽取部分顧客購鞋的尺碼,將所得數(shù)據繪成如圖所示頻率分布直方圖,已知圖中從左到右前三組的頻率之比為1:2:3,第二組的頻數(shù)為10.
(1)用頻率估計概率,求尺碼落在區(qū)間(37.5,43.5]概率約是多少?
(2)從尺碼落在區(qū)間(37.5,39.5](43.5,45.5]顧客中任意選取兩人,記在區(qū)間(43.5,45.5]的人數(shù)為X,求X的分布列及數(shù)學期望EX.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從2名男生和2名女生中任意選擇兩人在星期六、星期日參加某公益活動,每天一人,則星期六安排一名男生、星期日安排一名女生的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“大眾創(chuàng)業(yè),萬眾創(chuàng)新”是李克強總理在本屆政府工作報告中向全國人民發(fā)出的口號.某生產企業(yè)積極響應號召,大力研發(fā)新產品,為了對新研發(fā)的一批產品進行合理定價,將該產品按事先擬定的價格試銷,得到一組銷售數(shù)據,如下表所示:
(已知, ).
(1)求出的值;
(2)已知變量具有線性相關關系,求產品銷量(件)關于試銷單價(元)的線性回歸方程;(3)用表示用正確的線性回歸方程得到的與對應的產品銷量的估計值.當銷售數(shù)據的殘差的絕對值時,則將銷售數(shù)據稱為一個“好數(shù)據”.現(xiàn)從6個數(shù)據中任取2個,求抽取的2個數(shù)據中至少有1個是“好數(shù)據”的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com