【題目】某水泥廠銷售工作人員根據(jù)以往該廠的銷售情況,繪制了該廠日銷售量的頻率分布直方圖,如圖所示:
將日銷售量落入各組的頻率視為概率,并假設(shè)每天的銷售量相互獨(dú)立.
(1)求未來3天內(nèi),連續(xù)2天日銷售量不低于8噸,另一天日銷售量低于8噸的概率;
(2)用表示未來3天內(nèi)日銷售量不低于8噸的天數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.
【答案】(1);(2) 的分布列為
.
【解析】
試題分析:(1) 在頻率直方圖中,大于噸的兩個(gè)矩形的面積即為日銷售量不低于噸的頻率,未來三天內(nèi)連續(xù)天日銷售不低于噸,另一天日銷量低于噸包含兩個(gè)互斥事件,即第一、二天高于噸第三天低于噸與第一天低于噸而第二、三天高于噸,分別計(jì)算其概率相加即可;(2) 的可能取值為,且~,由二項(xiàng)分布公式計(jì)算其相應(yīng)的概率及期望即可.
試題解析: (Ⅰ)由頻率分布直方圖可知,日銷售量不低于噸的頻率為:
,……………………(1分)
記未來天內(nèi),第天日銷售量不低于噸為事件,則,………………(2分)
未來天內(nèi),連續(xù)天日銷售不低于噸,另一天日銷量低于噸包含兩個(gè)互斥事件和,………………(3分)
則:………………(4分)
.………………(6分)
(Ⅱ)的可能取值為,且~
,………………(7分)
,………………(8分)
,………………(9分)
,………………(10分)
所以的分布列為
…………(11分)
.………………(12分)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某區(qū)工商局、消費(fèi)者協(xié)會(huì)在月號舉行了以“攜手共治,暢享消費(fèi)”為主題的大型宣傳咨詢服務(wù)活動(dòng),著力提升消費(fèi)者維權(quán)意識(shí).組織方從參加活動(dòng)的群眾中隨機(jī)抽取名群眾,按他們的年齡分組:第組,第組,第組,第組,第組,得到的頻率分布直方圖如圖所示.
(Ⅰ)若電視臺(tái)記者要從抽取的群眾中選人進(jìn)行采訪,求被采訪人恰好在第組或第組的概率;
(Ⅱ)已知第組群眾中男性有人,組織方要從第組中隨機(jī)抽取名群眾組成維權(quán)志愿者服務(wù)隊(duì),求至少有兩名女性的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的前3項(xiàng)和為6,前8項(xiàng)和為-4.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=(4-an)qn-1 (q≠0,n∈N*),求數(shù)列{bn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的方程為,兩焦點(diǎn),點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)如圖,動(dòng)直線與橢圓有且僅有一個(gè)公共點(diǎn),點(diǎn)、是直線上的兩點(diǎn),且.求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的參數(shù)方程為(為參數(shù)),當(dāng)時(shí),曲線上對應(yīng)的點(diǎn)為.以原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(I)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(II)設(shè)曲線與的公共點(diǎn)為,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(),,.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),的兩個(gè)極值點(diǎn)為,().
①證明:;
②若,恰為的零點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)求曲線和公共弦的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知如圖①,正三角形的邊長為4,是邊上的高,,分別是和邊的中點(diǎn),現(xiàn)將△沿翻折成直二面角,如圖②.
(1)判斷直線與平面的位置關(guān)系,并說明理由;
(2)求棱錐的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com