【題目】已知f(x)=xlnx,g(x)=x3+ax2-x+2.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)對(duì)任意x∈(0,+∞),恒成立,求實(shí)數(shù)a的取值范圍.
【答案】(1)(2)[-2,+∞)
【解析】試題分析:(1)先求出其導(dǎo)函數(shù),再讓其導(dǎo)函數(shù)大于0對(duì)應(yīng)區(qū)間為增區(qū)間,小于0對(duì)應(yīng)區(qū)間為減區(qū)間即可.(注意是在定義域內(nèi)找單調(diào)區(qū)間.)
(2)已知條件可以轉(zhuǎn)化為a≥lnx﹣x﹣恒成立,對(duì)不等式右邊構(gòu)造函數(shù),利用其導(dǎo)函數(shù)求出函數(shù)的最大值即可求實(shí)數(shù)a的取值范圍.
解:(1)f′(x)=lnx+1,
令f′(x)<0得:0<x<,∴f(x)的單調(diào)遞減區(qū)間是(0,)
令f'(x)>0得:,∴f(x)的單調(diào)遞增區(qū)間是
(2)g′(x)=3x2+2ax﹣1,由題意2xlnx≤3x2+2ax+1∵x>0,
∴a≥lnx﹣x﹣恒成立 ①
設(shè)h(x)=lnx﹣﹣,則h′(x)=﹣=﹣
令h′(x)=0得:x=1,x=﹣(舍去)
當(dāng)0<x<1時(shí),h′(x)>0;
當(dāng)x>1時(shí),h'(x)<0
∴當(dāng)x=1時(shí),h(x)有最大值﹣2
若①恒成立,則a≥﹣2,
即a的取值范圍是[﹣2,+∞).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)?/span>的單調(diào)遞減的奇函數(shù),當(dāng)時(shí), .
(1)求的值;
(2)求的解析式;
(3)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高職院校進(jìn)行自主招生文化素質(zhì)考試,考試內(nèi)容為語(yǔ)文、數(shù)學(xué)、英語(yǔ)三科,總分為200分.現(xiàn)從上線的考生中隨機(jī)抽取20人,將其成績(jī)用莖葉圖記錄如下:
男 | 女 | |||||||||||
15 | 6 | |||||||||||
5 | 4 | 16 | 3 | 5 | 8 | |||||||
8 | 2 | 17 | 2 | 3 | 6 | 8 | 8 | 8 | ||||
6 | 5 | 18 | 5 | 7 | ||||||||
19 | 2 | 3 |
(Ⅰ)計(jì)算上線考生中抽取的男生成績(jī)的方差;(結(jié)果精確到小數(shù)點(diǎn)后一位)
(Ⅱ)從上述莖葉圖180分以上的考生中任選2人作為考生代表出席座談會(huì),求所選考生恰為一男一女的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是的導(dǎo)函數(shù),為自然對(duì)數(shù)的底數(shù).
(1)討論的單調(diào)性;
(2)當(dāng)時(shí),證明:;
(3)當(dāng)時(shí),判斷函數(shù)零點(diǎn)的個(gè)數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)區(qū)間.
(Ⅱ)當(dāng)時(shí),設(shè)的兩個(gè)極值點(diǎn),恰為的零點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差(°C) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)(顆) | 23 | 25 | 30 | 26 | 16 |
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;
(2)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(注: )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= (t+1)lnx,,其中t∈R.
(1)若t=1,求證:當(dāng)x>1時(shí),f(x)>0成立;
(2)若t> ,判斷函數(shù)g(x)=x[f(x)+t+1]的零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com