【題目】在銳角△ABC中,三個內(nèi)角A,BC所對的邊分別為a,b,c,且acsin C=(a2c2b2)·sin B

(1)若C,求A的大;

(2)若ab,求的取值范圍.

【答案】(1);(2).

【解析】試題分析:(1)將已知等式變形,整理得, 可得,由此可得C=2BC+2B=π,最后結(jié)合三角形內(nèi)角和定理和∠C, 即可算出∠A的大。
(2)根據(jù)三角形為非等腰三角形,結(jié)合(1)中化簡的結(jié)果可得C=2B,利用ABC是銳角三角形,得到B的范圍,又即可得范圍.

試題解析:

(1)因?yàn)?/span>acsin C=(a2c2b2)sin B,

所以=2=2cos B,所以sin C=sin 2B,

所以C=2BC+2B=π.

C=2BCA (舍去).

C+2B=π,C,A.A.

(2)若三角形為非等腰三角形C=2BA=π-BC=π-3B,

又因?yàn)槿切螢殇J角三角形

因?yàn)?/span>0<2B,0<π-3B,

B.

=2cos B所以(,).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個盒中裝有編號分別為1,2,3,4的四個形狀大小完全相同的小球.

(1)從盒中任取兩球,求取出的球的編號之和大于5的概率.

(2)從盒中任取一球,記下該球的編號,將球放回,再從盒中任取一球,記下該球的編號,求的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一盒中裝有12個球,其中5個紅球,4個黑球,2個白球,1個綠球.從中隨機(jī)取出1球,求:

(1)取出1球是紅球或黑球的概率;

(2)取出1球是紅球或黑球或白球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為平行四邊形, 為側(cè)棱的中點(diǎn).

(Ⅰ)求證: ∥平面

(Ⅱ)若,,

求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公差不為零的等差數(shù)列{an}中,a3=7,且a2a4,a9成等比數(shù)列.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)設(shè)bn ,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓過坐標(biāo)原點(diǎn)且圓心在曲線上.

(1)若圓分別與軸、軸交于點(diǎn)、(不同于原點(diǎn)),求證:的面積為定值;

(2)設(shè)直線與圓交于不同的兩點(diǎn),且,求圓的方程;

(3)設(shè)直線(2)中所求圓交于點(diǎn)、, 為直線上的動點(diǎn),直線與圓的另一個交點(diǎn)分別為,,且,在直線異側(cè),求證:直線過定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中國某手機(jī)品牌公司生產(chǎn)某款手機(jī)的年固定成本為40萬元,每生產(chǎn)1萬部還需另投入16萬元.設(shè)公司一年內(nèi)共生產(chǎn)該款手機(jī)萬部并全部銷量完,每萬部的銷售收入為萬元,且

1)寫出年利潤萬元關(guān)于年產(chǎn)量(萬部)的函數(shù)解析式;

2)當(dāng)年產(chǎn)量為多少萬部時,公司在該款手機(jī)的生產(chǎn)中所獲得的利潤最大?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某服裝商場為了了解毛衣的月銷售量y(件)與月平均氣溫x(℃)之間的關(guān)系,隨機(jī)統(tǒng)計了某4個月的月銷售量與當(dāng)月平均氣溫,其數(shù)據(jù)如下表:

(1) 算出線性回歸方程; (a,b精確到十分位)

(2)氣象部門預(yù)測下個月的平均氣溫約為3℃,據(jù)此估計,求該商場下個月毛衣的銷售量.

(參考公式:)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1當(dāng)時,求函數(shù)在點(diǎn)處的切線方程;

2求函數(shù)的單調(diào)區(qū)間;

3上恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案