【題目】一個盒中裝有編號分別為1,2,3,4的四個形狀大小完全相同的小球.

(1)從盒中任取兩球,求取出的球的編號之和大于5的概率.

(2)從盒中任取一球,記下該球的編號,將球放回,再從盒中任取一球,記下該球的編號,求的概率.

【答案】1;(2

【解析】

試題分析:

(1)從盒中任取兩球的基本事件有 六種情況.其中滿足編號之和大于5的事件有兩種情況,根據(jù)古典概型的概率公式即可求出結(jié)果;(2)有放回的連續(xù)去球有共16個基本事件,而滿足的共6個基本事件,根據(jù)古典概型的概率公式即可求出結(jié)果.

試題解析:

解:(1)從盒中任取兩球的基本事件有 六種情況.

編號之和大于5的事件有兩種情況,

故編號之和大于5的概率為.

(2)有放回的連續(xù)去球有 共16個基本事件,而包含 ,共6個基本事件,所以得概率為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖, 為斜邊的等腰直角三角形與等邊三角形所在平面互相垂直, 且點滿足.

(1)求證:平面平面;

(2)求平面 與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某廠商調(diào)查甲、乙兩種不同型號電視機在10個賣場的銷售量(單位:臺),并根據(jù)這10個賣場的銷售情況,得到如圖所示的莖葉圖. 為了鼓勵賣場,在同型號電視機的銷售中,該廠商將銷售量高于數(shù)據(jù)平均數(shù)的賣場命名為該型號電視機的星級賣場”.

(1)求在這10個賣場中,甲型號電視機的“星級賣場”的個數(shù);

(2)若在這10個賣場中,乙型號電視機銷售量的平均數(shù)為26.7,求a>b的概率;

(3)若a=1,記乙型號電視機銷售量的方差為,根據(jù)莖葉圖推斷b為何值時,達到最值.

(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以橢圓的四個頂點為頂點的四邊形的四條邊與共有個交點,且這個交點恰好把圓周六等分.

(1)求橢圓的方程;

(2)若直線相切,且橢圓相交于兩點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知一圓經(jīng)過點,且它的圓心在直線.

I求此圓的方程

II若點為所求圓上任意一點,且點,求線段的中點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】食品添加劑會引起血脂增高、血壓增高、血糖增高等疾病,為了解三高疾病是否與性別有關(guān),醫(yī)院隨機對入院的60人進行了問卷調(diào)查,得到了如下的列聯(lián)表:

(1)請將列聯(lián)表補充完整;若用分層抽樣的方法在患三高疾病的人群中抽9人,其中女性抽幾人?

患三高疾病

不患三高疾病

合計

6

30

合計

36

(2)為了研究三高疾病是否與性別有關(guān),請計算出統(tǒng)計量,并說明你有多大把握認為患三高疾病與性別有關(guān).

下列的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若四面體的三組對棱分別相等,即

給出下列結(jié)論:

四面體每個面的面積相等;

從四面體每個頂點出發(fā)的三條棱兩兩夾角之和大于 而小于 ;

連結(jié)四面體每組對棱中點的線段相互垂直平分;

從四面體每個頂點出發(fā)的三條棱的長可作為一個三角形的三邊長;

其中正確結(jié)論的序號是__________(寫出所有正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本,當年產(chǎn)量不足80千件時,(萬元);當年產(chǎn)量不小于80千件時(萬元),通過市場分析,若每件售價為500元時,該廠本年內(nèi)生產(chǎn)該商品能全部銷售完.

(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量千件)的函數(shù)解析式;

(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲的利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在銳角△ABC中,三個內(nèi)角A,B,C所對的邊分別為a,b,c,且acsin C=(a2c2b2)·sin B

(1)若C,求A的大小;

(2)若ab,求的取值范圍.

查看答案和解析>>

同步練習冊答案