雙曲線的漸近線方程是2x±y=0,則其離心率為( )
A.
B.
C.
D.5
【答案】分析:由雙曲線的漸近線方程是2x±y=0,得到b=2k,a=k,c=,由此能求出雙曲線的離心率.
解答:解:∵雙曲線的漸近線方程是2x±y=0,
∴b=2k,a=k,c=,
∴e===
故選A.
點(diǎn)評(píng):本題考查雙曲線的離心率的求法,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知焦點(diǎn)在x軸上的雙曲線的虛軸長(zhǎng)等于半焦距,則雙曲線的漸近線方程是
y=±
3
x
y=±
3
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•萊蕪二模)已知雙曲線
x2
a2
-
y2
b2
=1
的實(shí)軸長(zhǎng)為2,焦距為4,則該雙曲線的漸近線方程是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•棗莊二模)F1,F(xiàn)2為雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左右焦點(diǎn),過點(diǎn)F2作此雙曲線一條漸近線的垂線,垂足為M,滿足|
MF1
|=
2
|
MF2
|
,則此雙曲線的漸近線方程是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的一個(gè)焦點(diǎn)到一條漸近線的距離等于焦距的
1
4
,則該雙曲線的漸近線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若F1,F(xiàn)2是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
與橢圓
x2
25
+
y2
9
=1
的共同的左、右焦點(diǎn),點(diǎn)P是兩曲線的一個(gè)交點(diǎn),且△PF1F2為等腰三角形,則該雙曲線的漸近線方程是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案