【題目】設函數(shù)f(x)=ex , g(x)=kx+1.
(I)求函數(shù)y=f(x)﹣(x+1)的最小值;
(II)證明:當k>1時,存在x0>0,使對于任意x∈(0,x0)都有f(x)<g(x);
(III)若存在實數(shù)m使對任意x∈(0,m)都有|f(x)﹣g(x)|>x成立,求實數(shù)k的取值范圍.

【答案】解:(I)由已知y=ex﹣x﹣1,∴y'=ex﹣1,
設y'>0得x>0,設y'<0得x<0,
∴函數(shù)y=ex﹣x﹣1在(﹣∞,0)上遞減,在(0,+∞)上遞增,
則當x=0時,y有最小值為0
(II)證明:設h(x)=f(x)﹣g(x),即h(x)=ex﹣kx﹣1,
∴h'(x)=ex﹣k,設h'(x)=0得x=lnk(k>1),
∵k>1,∴當x∈(0,lnk)時,h'(x)<0,
即h(x)在(0,lnk)上單調遞減,
而h(0)=0,且h(x)是R上的連續(xù)函數(shù),
∴h(x)<0在(0,lnk)上恒成立,
即f(x)<g(x)在(0,lnk)上恒成立,
∴取0<x0≤lnk,則對任意x∈(0,x0)都有f(x)<g(x)
(III)①當k>1時,由(II)知存在x0>0,
使對于任意x∈(0,x0)都有f(x)<g(x),
則不等式|f(x)﹣g(x)|>x
等價于g(x)﹣f(x)>x,即(k﹣1)x+1﹣ex>0,
設t(x)=(k﹣1)x+1﹣ex , t'(x)=k﹣1﹣ex
設t'(x)>0得x<ln(k﹣1),設t'(x)<0得x>ln(k﹣1),
若1<k≤2,ln(k﹣1)≤0,
∵(0,x0(ln(k﹣1),+∞),
∴t(x)在(0,x0)上遞減,注意到t(0)=0,
∴對任意x∈(0,x0),t(x)<0,與題設不符,
若k>2,ln(k﹣1)>0,(0,ln(k﹣1))(﹣∞,ln(k﹣1)),
∴t(x)在(0,ln(k﹣1))上遞增,
∵t(0)=0,∴對任意x∈(0,ln(k﹣1)),t(x)>0符合題設,
此時取0<m≤min{x0 , ln(k﹣1)},
可得對任意x∈(0,m)都有|f(x)﹣g(x)|>x
②當k≤1時,由(I)知ex﹣(x+1)≥0,
f(x)﹣g(x)=ex﹣kx﹣1=ex﹣(x+1)+(1﹣k)x≥(1﹣k)x≥0,
對任意x>0都成立,∴|f(x)﹣g(x)|>x等價于ex﹣(k+1)x﹣1>0,
設φ(x)=ex﹣(k+1)x﹣1,
則φ'(x)=ex﹣(k+1),
若k≤0,即有k+1≤1,∴對任意正數(shù)x,φ'(x)>0,
∴φ(x)在(0,+∞)上遞增,
∵φ(0)=0,∴φ(x)>0在(0,+∞)上恒成立,
此時,m可取任意正數(shù)都符合題設,
若0<k≤1,設φ'(x)>0得x>ln(k+1)>0,
設φ'(x)<0得x<ln(k+1),
∴φ(x)在(0,ln(k+1))上遞減,注意到φ(0)=0,
∴對任意x∈(0,ln(k+1)),φ(x)<0,不符合題設
綜上所述,滿足題設條件的k的取值范圍為{k|k≤0或k>2}
【解析】(Ⅰ)求出函數(shù)的導數(shù),解關于導函數(shù)的不等式,求出函數(shù)的單調區(qū)間,從而求出函數(shù)的最小值即可;(Ⅱ)設h(x)=f(x)﹣g(x),求出函數(shù)的導數(shù),得到函數(shù)的單調性,從而證出結論;(Ⅲ)通過討論k的范圍,①當k>1時,得到(k﹣1)x+1﹣ex>0,設t(x)=(k﹣1)x+1﹣ex , 根據函數(shù)的單調性求出k的范圍即可;②當k≤1時,等價于ex﹣(k+1)x﹣1>0,設φ(x)=ex﹣(k+1)x﹣1,根據函數(shù)的單調性求出k的范圍即可.
【考點精析】關于本題考查的利用導數(shù)研究函數(shù)的單調性和函數(shù)的最大(小)值與導數(shù),需要了解一般的,函數(shù)的單調性與其導數(shù)的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數(shù)在這個區(qū)間單調遞增;(2)如果,那么函數(shù)在這個區(qū)間單調遞減;求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某大學準備在開學時舉行一次大學一年級學生座談會,擬邀請20名來自本校機械工程學院、海洋學院、醫(yī)學院、經濟學院的學生參加,各學院邀請的學生數(shù)如下表所示:

學院

機械工程學院

海洋學院

醫(yī)學院

經濟學院

人數(shù)

4

6

4

6

(Ⅰ)從這20名學生中隨機選出3名學生發(fā)言,求這3名學生中任意兩個均不屬于同一學院的概率;
(Ⅱ)從這20名學生中隨機選出3名學生發(fā)言,設來自醫(yī)學院的學生數(shù)為ξ,求隨機變量ξ的概率分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)在R上存在導數(shù)f′(x),對任意的x∈R,有f(﹣x)+f(x)=x2 , 且x∈(0,+∞)時,f′(x)>x.若f(2﹣a)﹣f(a)≥2﹣2a,則實數(shù)a的取值范圍為(
A.[1,+∞)
B.(﹣∞,1]
C.(﹣∞,2]
D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設0<a<1,已知函數(shù)f(x)= ,若對任意b∈(0, ),函數(shù)g(x)=f(x)﹣b至少有兩個零點,則a的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖ABCD是平面四邊形,∠ADB=∠BCD=90°,AB=4,BD=2.
(Ⅰ)若BC=1,求AC的長;
(Ⅱ)若∠ACD=30°,求tan∠BDC的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解學生寒假閱讀名著的情況,一名教師對某班級的所有學生進行了調查,調查結果如下表:

本數(shù)
人數(shù)
性別

0

1

2

3

4

5

男生

0

1

4

3

2

2

女生

0

0

1

3

3

1

(I)從這班學生中任選一名男生,一名女生,求這兩名學生閱讀名著本數(shù)之和為4的概率;
(II)若從閱讀名著不少于4本的學生中任選4人,設選到的男學生人數(shù)為 X,求隨機變量 X的分布列和數(shù)學期望;
(III)試判斷男學生閱讀名著本數(shù)的方差 與女學生閱讀名著本數(shù)的方差 的大。ㄖ恍鑼懗鼋Y論).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),曲線在點處的切線方程為

(1)求,的值;

(2)若,求函數(shù)的單調區(qū)間;

(3)設函數(shù),且在區(qū)間內為減函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a>0,函數(shù)f(x)= +|lnx﹣a|,x∈[1,e2].
(1)當a=3時,求曲線y=f(x)在點(3,f(3))處的切線方程;
(2)若f(x)≤ 恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項和為Sn , 且 ,S20=17,則S30為(
A.15
B.20
C.25
D.30

查看答案和解析>>

同步練習冊答案