【題目】已知函數(shù)

(1)若曲線在點(diǎn)處的切線與直線垂直,求函數(shù)的極值;

(2)設(shè)函數(shù).當(dāng)=時(shí),若區(qū)間[1,e]上存在x0,使得,求實(shí)數(shù)的取值范圍.(為自然對(duì)數(shù)底數(shù))

【答案】1)極小值為;(2

【解析】試題分析:(1)求出函數(shù)的導(dǎo)數(shù),計(jì)算的值,求出,從而求出的單調(diào)區(qū)間,求出函數(shù)的極值即可;(2)令,根據(jù)函數(shù)的單調(diào)性求出的最小值,從而求出的范圍即可.

試題解析:(1)),因?yàn)榍在點(diǎn)(1,f(1))處的切線與直線垂直,所以,即,解得.所以, ∴當(dāng)時(shí), 上單調(diào)遞減;當(dāng)時(shí), ,f(x)在(2,+∞)上單調(diào)遞增;∴當(dāng)x=2時(shí),f(x)取得極小值f(x)極小值為ln2.

(2)令,則,欲使在區(qū)間上上存在,使得,只需在區(qū)間的最小值小于零.令得, .當(dāng),即時(shí), 上單調(diào)遞減,則的最小值為,,解得,,;當(dāng),即時(shí), 上單調(diào)遞增,則的最小值為,解得;當(dāng),即時(shí), 上單調(diào)遞減,在上單調(diào)遞增,則的最小值為,,,,此時(shí)不成立.綜上所述,實(shí)數(shù)m的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】假設(shè)關(guān)于某設(shè)備的使用年限x和支出的維修費(fèi)用y(萬元),有如下表的統(tǒng)計(jì)資料:

使用年限x

2

3

4

5

6

維修費(fèi)用y

2.2

3.8

5.5

6.5

7.0

若由資料知y對(duì)x呈線性相關(guān)關(guān)系,試求:
(1)線性回歸方程 .
(2)估計(jì)使用年限為10年時(shí),維修費(fèi)用是多少.
(3)計(jì)算總偏差平方和、殘差平方和及回歸平方和.
(4)求 并說明模型的擬合效果.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有兩個(gè)不同的零點(diǎn).

1)求的取值范圍;

2)記兩個(gè)零點(diǎn)分別為,,已知,若不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓內(nèi)接△ABC中,D為BC上一點(diǎn),且△ADC為正三角形,點(diǎn)E為BC的延長線上一點(diǎn),AE為圓O的切線.
(1)求∠BAE 的度數(shù);
(2)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,☉O內(nèi)切于△ABC的邊于點(diǎn)D,E,F,AB=AC,連接AD交☉O于點(diǎn)H,直線HF交BC的延長線于點(diǎn)G.
(1)求證:圓心O在AD上;
(2)求證:CD=CG;
(3)若AH∶AF=3∶4,CG=10,求HF的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有蒲(水生植物名)生一日,長三尺;莞(植物名,俗稱水蔥、席子草)生一日,長一尺.蒲生日自半,莞生日自倍.問幾何日而長等?”意思是:今有蒲生長1日,長為3尺;莞生長1日,長為1尺.蒲的生長逐日減半,莞的生長逐日增加1倍.若蒲、莞長度相等,則所需的時(shí)間約為( )(結(jié)果保留一位小數(shù).參考數(shù)據(jù):)( )

A. 1.3日 B. 1.5日 C. 2.6日 D. 2.8日

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的奇函數(shù),設(shè)其導(dǎo)函數(shù)為,當(dāng)時(shí),恒有,令,則滿足的實(shí)數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的公差d>0,其前n項(xiàng)和為Sn , 若S3=12,且2a1 , a2 , 1+a3成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn= (n∈N*),且數(shù)列{bn}的前n項(xiàng)和為Tn , 證明: ≤Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=e1+|x| ,則使得f(x)>f(2x﹣1)成立的x的取值范圍是(
A.
B.
C.(﹣ ,
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案