【題目】2016年上半年,股票投資人袁先生同時投資了甲、乙兩只股票,其中甲股票賺錢的概率為 ,賠錢的概率是 ;乙股票賺錢的概率為 ,賠錢的概率為 .對于甲股票,若賺錢則會賺取5萬元,若賠錢則損失4萬元;對于乙股票,若賺錢則會賺取6萬元,若賠錢則損失5萬元.
(Ⅰ)求袁先生2016年上半年同時投資甲、乙兩只股票賺錢的概率;
(Ⅱ)試求袁先生2016年上半年同事投資甲、乙兩只股票的總收益的分布列和數(shù)學期望.
【答案】解:(Ⅰ)袁先生2016年上半年同時投資甲、乙兩只股票賺錢的概率為:
p= = .
(Ⅱ)用X萬元表示袁先生2016年上半年同時投資甲、乙兩只股票的總收益,
則X所有可能取值為﹣9,0,2,11,
P(X=﹣9)= = ,
P(X=0)= = ,
P(X=2)= = ,
P(X=11)= = ,
∴X的分布列為:
X | ﹣9 | 0 | 2 | 11 |
P |
E(X)= =﹣
【解析】(Ⅰ)利用互斥事件概率加法公式和相互獨立事件概率乘法公式能求出袁先生2016年上半年同時投資甲、乙兩只股票賺錢的概率.(Ⅱ)用X萬元表示袁先生2016年上半年同時投資甲、乙兩只股票的總收益,則X所有可能取值為﹣9,0,2,11,分別求出相應的概率,由此能求出X的分布列和數(shù)學期望.
【考點精析】解答此題的關鍵在于理解離散型隨機變量及其分布列的相關知識,掌握在射擊、產品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.
科目:高中數(shù)學 來源: 題型:
【題目】在一次數(shù)學競賽中,30名參賽學生的成績(百分制)的莖葉圖如圖所示:若將參賽學生按成績由高到低編為1﹣30號,再用系統(tǒng)抽樣法從中抽取6人,則其中抽取的成績在[77,90]內的學生人數(shù)為( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知:條件p:實數(shù)t滿足使對數(shù)log2(﹣2t2+7t﹣5)有意義;條件q:實數(shù)t滿足不等式t2﹣(a+3)t+a+2<0
(1)若命題¬p為真,求實數(shù)t的取值范圍;
(2)若命題p是命題q的充分不必要條件,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)
已知橢圓:的左、右頂點分別為A,B,其離心率,點為橢圓上的一個動點,面積的最大值是.
(1)求橢圓的方程;
(2)若過橢圓右頂點的直線與橢圓的另一個交點為,線段的垂直平分線與軸交于點,當時,求點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】拋物線C的方程為y=ax2(a<0),過拋物線C上一點P(x0 , y0)(x0≠0)作斜率為k1 , k2的兩條直線分別交拋物線C于A(x1 , y1)B(x2 , y2)兩點(P,A,B三點互不相同),且滿足k2+λk1=0(λ≠0且λ≠﹣1).
(Ⅰ)求拋物線C的焦點坐標和準線方程;
(Ⅱ)設直線AB上一點M,滿足 =λ ,證明線段PM的中點在y軸上;
(Ⅲ)當λ=1時,若點P的坐標為(1,﹣1),求∠PAB為鈍角時點A的縱坐標y1的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2 sin cos ﹣2sin2 (ω>0)的最小正周期為3π.
(I)求函數(shù)f(x)的單調遞增區(qū)間;
(Ⅱ)在△ABC中,a,b,c分別為角A,B,C所對的邊,a<b<c, a=2csinA,并且f( A+ )= ,求cosB的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】連續(xù)拋擲同一顆均勻的骰子,令第i次得到的點數(shù)為ai , 若存在正整數(shù)k,使a1+a2+…+ak=6,則稱k為你的幸運數(shù)字.
(1)求你的幸運數(shù)字為3的概率;
(2)若k=1,則你的得分為5分;若k=2,則你的得分為3分;若k=3,則你的得分為1分;若拋擲三次還沒找到你的幸運數(shù)字則記0分,求得分X的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,公園有一塊邊長為2的等邊△ABC的邊角地,現(xiàn)修成草坪,圖中DE把草坪分成面積相等的兩部分,D在AB上,E在AC上.
(1)設AD=x(x≥1),ED=y,求用x表示y的函數(shù)關系式;
(2)如果DE是灌溉水管,為節(jié)約成本,希望它最短,DE的位置應在哪里?如果DE是參觀線路,則希望它最長,DE的位置又應在哪里?請予證明.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com