已知向量,函數(shù)的圖象與直線的相鄰兩個交點之間的距離為
(Ⅰ)求的值;
(Ⅱ)求函數(shù)上的單調遞增區(qū)間.

(Ⅰ);(Ⅱ)的單調增區(qū)間為.

解析試題分析:(Ⅰ)先由向量數(shù)量積坐標運算得,再由圖象與直線的相鄰兩個交點之間的距離為,從而求得;(Ⅱ)由,再由余弦函數(shù)的單調性可得的單調增區(qū)間為.
試題解析:(Ⅰ)   1分

    5分
由題意,   6分
(Ⅱ),時,
時,單調遞增   9分
的單調增區(qū)間為   12分
考點:1.向量的數(shù)量積;2.三角恒等變換;3.三角函數(shù)的單調性

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),其圖象上相鄰兩條對稱軸之間的距離為,且過點
(Ⅰ)求的值;
(Ⅱ)求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

中,角所對的邊為,且滿足
(Ⅰ)求角的值;
(Ⅱ)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

函數(shù)的部分圖象如下圖所示,將的圖象向右平移個單位后得到函數(shù)的圖象.

(1)求函數(shù)的解析式;
(2)若的三邊為成單調遞增等差數(shù)列,且,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知
(1)求的值;
(2)若是第三象限的角,化簡三角式,并求值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知向量,設函數(shù)的圖象關于直線對稱,其中常數(shù)
(Ⅰ)求的最小正周期;
(Ⅱ)將函數(shù)的圖像向左平移個單位,得到函數(shù)的圖像,用五點法作出函數(shù)在區(qū)間的圖像.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)
(l)求函數(shù)的最小正周期;
(2)求函數(shù)的單調遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)求的單調遞增區(qū)間;
(2)在中,內角A,B,C的對邊分別為,已知成等差數(shù)列,且,求邊的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,扇形AOB,圓心角AOB的大小等于,半徑為2,在半徑OA上有一動點C,過點C作平行于OB的直線交弧AB于點P.

(1)若C是半徑OA的中點,求線段PC的長;
(2)設,求面積的最大值及此時的值.

查看答案和解析>>

同步練習冊答案