已知集合A={x|
x-3
x-7
≤0},B={x|x2-7x+10<0},則∁R(A∩B)=( 。
A、(-∞,3)∪(5,+∞)
B、(-∞,3)∪[5,+∞)
C、(-∞,3]∪[5,+∞)
D、(-∞,3]∪(5,+∞)
考點(diǎn):交、并、補(bǔ)集的混合運(yùn)算
專題:集合
分析:解分式不等式求得A,解一元二次不等式求得B,根據(jù)兩個(gè)集合的交集的定義求得 A∩B,再根據(jù)補(bǔ)集的定義求得∁R(A∩B).
解答: 解:集合A={x|
x-3
x-7
≤0}={x|3≤x<7},B={x|x2-7x+10<0}={x|2<x<5},
∴A∩B=[3,5),
∴∁R(A∩B)=(-∞,3)∪[5,+∞),
故選:B.
點(diǎn)評(píng):本題主要考查分式不等式、一元二次不等式的解法,補(bǔ)集、兩個(gè)集合的交集的定義和求法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}為等比數(shù)列,若a4=1,a12=16,則a8的值為( 。
A、±4
B、-4
C、4
D、4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

4名優(yōu)秀學(xué)生A、B、C、D全部都被保送到甲、乙、丙3所學(xué)校,每所學(xué)校至少去一名,則不同的保送方案共有( 。
A、18種B、36種
C、72種D、108種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為2,則輸入的正整數(shù)a的可能取值的集合是( 。
A、{1,2,3,4,5}
B、{1,2,3,4,5,6}
C、{2,3,4,5}
D、{2,3,4,5,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(2,1),
b
=(-1,k),如果
a
b
,則實(shí)數(shù)k的值等于( 。
A、2
B、-2
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z1=2+i,z2=a-3i(i為虛數(shù)單位,a∈R).若z1•z2為實(shí)數(shù),則a的值為(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的各項(xiàng)均為正數(shù),觀察程序框圖,當(dāng)k=2時(shí),S=
2
3
;當(dāng)k=3時(shí),S=
3
4

(1)試求數(shù)列{an}的通項(xiàng);
(2)設(shè)若[x]表示不大于x的最大整數(shù)(如[2.10]=2,[0.9]=0),
求T=[log21]+[log22]+[log23]+…+[log2(2 an-1)]+[log2(2 an)]關(guān)于n的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an}滿足a1=a且an+1+(-1)nan=2n-1(其中a為常數(shù)),Sn是數(shù)列{an}的前n項(xiàng)和,數(shù)列{bn}滿足bn=a2n
(1)求a1+a3的值;
(2)試判斷{bn}是否為等差數(shù)列,并說(shuō)明理由;
(3)求Sn(用a表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=sin(ωx-
4
)(ω>0)的最小正周期為π
(Ⅰ)求ω;
(Ⅱ)若f(
α
2
+
8
)=
24
25
,且α∈(-
π
2
,
π
2
),求tanα的值.
(Ⅲ)畫出函數(shù)y=f(x)在區(qū)間[0,π]上的圖象(完成列表并作圖).
(1)列表
x 0
8
8
π
y -1 1
(2)描點(diǎn),連線

查看答案和解析>>

同步練習(xí)冊(cè)答案