分析 (Ⅰ)設AC于BD交于點G.證明AF∥EG,然后證明AF∥平面BDE.
(Ⅱ)連接FG.證明CF⊥EG,BD⊥AC.CF⊥BD.然后證明CF⊥平面BDE.
解答 證明:(Ⅰ)設AC于BD交于點G.因為EF∥AG,且EF=1,AG=$\frac{1}{2}$AG,
所以四邊形AGEF為平行四邊形
所以AF∥EG
因為EG?平面BDE,AF?平面BDE,
所以AF∥平面BDE
(Ⅱ)連接FG.因為EF∥CG,EF=CG=CE,所以平行四邊形CEFG為菱形.
所以CF⊥EG.
因為四邊形ABCD為正方形,所以BD⊥AC.
又因為平面ACEF⊥平面ABCD,且平面ACEF∩平面ABCD=AC,
所以BD⊥平面ACEF.
所以CF⊥BD.又BD∩EG=G,
所以CF⊥平面BDE.
點評 本題考查直線與平面垂直以及直線與平面平行的判定定理以及性質定理的應用,考查空間想象能力以及邏輯推理能力.
科目:高中數學 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{1}{2}$ | C. | $\sqrt{3}$ | D. | $\frac{\sqrt{3}}{4}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -1 | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com