【題目】已知函數(shù),方程3個(gè)不同的解,現(xiàn)給出下述結(jié)論:①;②;③的極小值.則其中正確的結(jié)論的有(

A.①③B.①②③C.②③D.

【答案】C

【解析】

首先對(duì)函數(shù)求導(dǎo),進(jìn)一步求函數(shù)的二階導(dǎo),對(duì)二階導(dǎo)的符號(hào)進(jìn)行判斷,得出一階導(dǎo)的符號(hào),之后對(duì)函數(shù)圖象的走向以及對(duì)應(yīng)的變化趨勢(shì),從而判斷出導(dǎo)數(shù)的導(dǎo)函數(shù)的零點(diǎn)、函數(shù)的零點(diǎn)以及函數(shù)極小值所滿足的特征,從而判斷出真命題的個(gè)數(shù)得到結(jié)果.

所以遞減,遞增,

當(dāng)時(shí),,

此時(shí)為增函數(shù),方程不會(huì)有三個(gè)解,此時(shí)不符合題意,即①錯(cuò)誤.

時(shí),,又時(shí),;時(shí),

所以有兩個(gè)零點(diǎn),不妨,則.

當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.

因?yàn)?/span>時(shí),;時(shí),,

所以此時(shí)有三個(gè)零點(diǎn),即為,不妨設(shè),則.

因?yàn)?/span>,則,

所以,從而,即②正確.

由上面可知,所以③正確.

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一臺(tái)儀器每啟動(dòng)一次都隨機(jī)地出現(xiàn)一個(gè)位的二進(jìn)制數(shù),其中的各位數(shù)字中,出現(xiàn)的概率為,出現(xiàn)的概率為.若啟動(dòng)一次出現(xiàn)的數(shù)字為,則稱這次試驗(yàn)成功.若成功一次得分,失敗一次得分,則次這樣的重復(fù)試驗(yàn)的總得分的數(shù)學(xué)期望和方差分別為(

A.,B.,C.,D.,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),數(shù)列滿足,,則(

A.,則B.,則

C.,則D.,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為貫徹落實(shí)黨中央全面建設(shè)小康社會(huì)的戰(zhàn)略部署,某貧困地區(qū)的廣大黨員干部深入農(nóng)村積極開(kāi)展精準(zhǔn)扶貧工作.經(jīng)過(guò)多年的精心幫扶,截至2018年底,按照農(nóng)村家庭人均年純收入8000元的小康標(biāo)準(zhǔn),該地區(qū)僅剩部分家庭尚未實(shí)現(xiàn)小康,20196月,為估計(jì)該地能否在2020年全面實(shí)現(xiàn)小康,統(tǒng)計(jì)了該地當(dāng)時(shí)最貧困的一個(gè)家庭201916月的人均月純收入,作出散點(diǎn)如下:

根據(jù)盯關(guān)性分析,發(fā)現(xiàn)其家庭人均月純收入與時(shí)間代碼之間具有較強(qiáng)的線性相關(guān)關(guān)系(記20191月、2……分別為,,依此類推),由此估計(jì)該家庭2020年能實(shí)現(xiàn)小康生活.但20201月突如其來(lái)的新冠肺炎疫情影響了奔小康的進(jìn)展,該家庭2020年第一季度每月的人均月純收入只有201912月的預(yù)估值的

1)求關(guān)于的線性回歸方程;

2)求該家庭20203月份的人均月純收入;

3)如果以該家庭3月份人均月純收入為基數(shù),以后每月增長(zhǎng)率為,問(wèn)該家庭2020年底能否實(shí)現(xiàn)小康生活?

參考數(shù)據(jù):,

參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高三男生體育課上做投籃球游戲,兩人一組,每輪游戲中,每小組兩人每人投籃兩次,投籃投進(jìn)的次數(shù)之和不少于次稱為優(yōu)秀小組”.小明與小亮同一小組,小明、小亮投籃投進(jìn)的概率分別為.

1)若,,則在第一輪游戲他們獲優(yōu)秀小組的概率;

2)若則游戲中小明小亮小組要想獲得優(yōu)秀小組次數(shù)為次,則理論上至少要進(jìn)行多少輪游戲才行?并求此時(shí)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知多面體是正方體,分別是棱,的中點(diǎn),點(diǎn)是棱上的動(dòng)點(diǎn),過(guò)點(diǎn),的平面與棱交于點(diǎn),則以下說(shuō)法不正確的是( )

A.四邊形是平行四邊形

B.四邊形是菱形

C.當(dāng)點(diǎn)從點(diǎn)往點(diǎn)運(yùn)動(dòng)時(shí),四邊形的面積先增大后減小

D.當(dāng)點(diǎn)從點(diǎn)往點(diǎn)運(yùn)動(dòng)時(shí),三棱錐的體積一直增大

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】祖暅原理指出:兩個(gè)等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個(gè)幾何體的體積相等,例如在計(jì)算球的體積時(shí),構(gòu)造一個(gè)底面半徑和高都與球的半徑相等的圓柱,與半球(如圖①)放置在同一平面上,然后在圓柱內(nèi)挖去一個(gè)以圓柱下底面圓心為頂點(diǎn),圓柱上底面為底面的圓錐后得到一新幾何體(如圖②),用任何一個(gè)平行于底面的平面去截它們時(shí),可證得所截得的兩個(gè)截面面積相等,由此可證明新幾何體與半球體積相等.現(xiàn)將橢圓所圍成的平面圖形繞y軸旋轉(zhuǎn)一周后得一橄欖狀的幾何體,類比上述方法,運(yùn)用祖暅原理可求得其體積等于(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020年,新型冠狀病毒引發(fā)的疫情牽動(dòng)著億萬(wàn)人的心,八方馳援戰(zhàn)疫情,眾志成城克時(shí)難,社會(huì)各界支援湖北共抗新型冠狀病毒肺炎,重慶某醫(yī)院派出3名醫(yī)生,2名護(hù)士支援湖北,現(xiàn)從這5人中任選2人定點(diǎn)支援湖北某醫(yī)院,則恰有1名醫(yī)生和1名護(hù)士被選中的概率為(

A.0.7B.0.4C.0.6D.0.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.

(Ⅰ)求曲線的直角坐標(biāo)方程和直線的普通方程;

(Ⅱ)若直線與曲線相交于, 兩點(diǎn),求的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案