精英家教網 > 高中數學 > 題目詳情

【題目】為貫徹落實黨中央全面建設小康社會的戰(zhàn)略部署,某貧困地區(qū)的廣大黨員干部深入農村積極開展精準扶貧工作.經過多年的精心幫扶,截至2018年底,按照農村家庭人均年純收入8000元的小康標準,該地區(qū)僅剩部分家庭尚未實現小康,20196月,為估計該地能否在2020年全面實現小康,統(tǒng)計了該地當時最貧困的一個家庭201916月的人均月純收入,作出散點如下:

根據盯關性分析,發(fā)現其家庭人均月純收入與時間代碼之間具有較強的線性相關關系(記20191月、2……分別為,,,依此類推),由此估計該家庭2020年能實現小康生活.但20201月突如其來的新冠肺炎疫情影響了奔小康的進展,該家庭2020年第一季度每月的人均月純收入只有201912月的預估值的

1)求關于的線性回歸方程;

2)求該家庭20203月份的人均月純收入;

3)如果以該家庭3月份人均月純收入為基數,以后每月增長率為,問該家庭2020年底能否實現小康生活?

參考數據:,,

參考公式:,

【答案】1;(2500元;(3)能.

【解析】

1)根據題意求得,再由提供的數據得到,,代入公式,求得,進而求得,寫出回歸方程.

2)用(1)的回歸方程,令,求得201912月該家庭人均月純收入預估值,然后再根據2020年第一季度每月的人均月純收入只有201912月的預估值的求解.

3)由每月的增長率為,設從3月開始到12月的純收入之和為,,利用等比數列求和公式求解,然后再加上1,2月份的收入與8000比較即可.

1)依題意得:,,

,,

所以

,

所以關于的線性回歸方程為.

2)令,得201912月該家庭人均月純收入預估值為

故,20203月份該家庭的人均月純收入為元.

3)每月的增長率為,設從3月開始到12月的純收入之和為

,

,

,

故到年底能如期實現小康.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率e滿足,以坐標原點為圓心,橢圓C的長軸長為半徑的圓與直線相切.

1)求橢圓C的方程;

2)過點P(0,1)的動直線(直線的斜率存在)與橢圓C相交于A,B兩點,問在y軸上是否存在與點P不同的定點Q,使得恒成立?若存在,求出定點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在多面體中,平面平面,,,,,

1)求平面與平面所成二面角的正弦值;

2)若是棱的中點,求證:對于棱上任意一點都不平行.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=|lnx|,g(x)=,則方程|f(x)+g(x)|=1實根的個數為________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】波羅尼斯(古希臘數學家,約公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學成果,它將圓錐曲線的性質網羅殆盡幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內與兩定點距離的比為常數k)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.現有,,則當的面積最大時,AC邊上的高為_______________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐EABCD的側棱DE與四棱錐FABCD的側棱BF都與底面ABCD垂直,,//,.

1)證明://平面BCE.

2)設平面ABF與平面CDF所成的二面角為θ,求.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,方程3個不同的解,現給出下述結論:①;②;③的極小值.則其中正確的結論的有(

A.①③B.①②③C.②③D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系xOy中,曲線C的參數方程為為參數),直線,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系.

1)求直線l和曲線C的極坐標方程;

2)若直線與直線l相交于點A,與曲線C相交于不同的兩點M,N.的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】海水稻就是耐鹽堿水稻,是一種介于野生稻和栽培稻之間的普遍生長在海邊灘涂地區(qū),具有耐鹽堿的水稻,它比其它普通的水稻均有更強的生存競爭能力,具有抗?jié),抗病蟲害,抗倒伏等特點,還具有預防和治療多種疾病的功效,防癌效果尤為顯著.海水稻的灌溉是將海水稀釋后進行灌溉.某試驗基地為了研究海水濃度(‰)對畝產量()的影響,通過在試驗田的種植實驗,測得了某種海水稻的畝產量與海水濃度的數據如表.繪制散點圖發(fā)現,可用線性回歸模型擬合畝產量與海水濃度之間的相關關系,用最小二乘法計算得之間的線性回歸方程為.

海水濃度(‰)

3

4

5

6

7

畝產量()

0.62

0.58

0.49

0.4

0.31

殘差

1)請你估計:當澆灌海水濃度為8‰時,該品種的畝產量.

2)①完成上述殘差表:

②統(tǒng)計學中,常用相關指數來刻畫回歸效果,越大,模型擬合效果越好,并用它來說明預報變量與解釋變量的相關性.你能否利用以上表格中的數據,利用統(tǒng)計學的相關知識,說明澆灌海水濃度對畝產量的貢獻率?(計算中數據精確到

(附:殘差公式,相關指數)

查看答案和解析>>

同步練習冊答案