【題目】已知函數(shù)f(x)=loga(1+x),g(x)=loga(1﹣x),(a>1).
(1)求函數(shù)h(x)=f(x)﹣g(x)的定義域;
(2)求使f(x)﹣g(x)>0的x的取值范圍.
【答案】(1)(﹣1,1); (2)(0,1).
【解析】
(1)利用對數(shù)的真數(shù)大于零列不等式組求解即可;(2)根據(jù)對數(shù)函數(shù)的單調(diào)性,結(jié)合函數(shù)的定義域可得,解不等式組可得結(jié)果.
(1)∵f(x)=loga(1+x),g(x)=loga(1﹣x),(a>1).
∴f(x)﹣g(x)=loga(1+x)﹣loga(1﹣x),(a>1).
要使函數(shù)f(x)﹣g(x)有意義,則 ,解得﹣1<x<1,
即函數(shù)f(x)﹣g(x)的定義域為(﹣1,1).
(2)由f(x)﹣g(x)>0得f(x)>g(x),
即loga(1+x)>loga(1﹣x),
因為a>1,則 ,即,解得0<x<1.
不等式的解集為(0,1).
科目:高中數(shù)學 來源: 題型:
【題目】已知a,b,c分別為銳角△ABC三個內(nèi)角A,B,C的對邊,且(a+b)(sinA﹣sinB)=(c﹣b)sinC (Ⅰ)求∠A的大小;
(Ⅱ)若f(x)= sin cos +cos2 ,求f(B)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右兩個焦點分別為,離心率,短軸長為2.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)點為橢圓上的一動點(非長軸端點),的延長線與橢圓交于點,的延長線與橢圓交于點,若面積為,求直線的方程.
【答案】(Ⅰ)(Ⅱ)或
【解析】試題分析:(Ⅰ)由題意得,再由 橢圓的方程為;(Ⅱ)①當直線斜率不存在時,不妨取面積為 ,不符合題意. ②當直線斜率存在時,設(shè)直線, 由 得 ,再求點的直線的距離 點到直線的距離為面積為 ∴或 所求方程為或.
試題解析:
(Ⅰ)由題意得,∴,
∵,∴,
∴橢圓的方程為.
(Ⅱ)①當直線斜率不存在時,不妨取,
∴面積為 ,不符合題意.
②當直線斜率存在時,設(shè)直線,
由化簡得,
設(shè),
∴ ,
∵點的直線的距離,
又是線段的中點,∴點到直線的距離為,
∴面積為 ,
∴,∴,∴,∴或,
∴直線的方程為或.
【題型】解答題
【結(jié)束】
25
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間與極值;
(Ⅱ)若,且,證明: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別是a,b,c,點(a,b)在4xcosB﹣ycosC=ccosB上.
(1)cosB的值;
(2)若 =3,b=3 ,求a和c.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖放置的邊長為2的正三角形ABC沿x軸滾動,記滾動過程中頂點A的橫、縱坐標分別為和,且是在映射作用下的象,則下列說法中:
① 映射的值域是;
② 映射不是一個函數(shù);
③ 映射是函數(shù),且是偶函數(shù);
④ 映射是函數(shù),且單增區(qū)間為,
其中正確說法的序號是___________.
說明:“正三角形ABC沿x軸滾動”包括沿x軸正方向和沿x軸負方向滾動.沿x軸正方向滾動指的是先以頂點B為中心順時針旋轉(zhuǎn),當頂點C落在x軸上時,再以頂點C為中心順時針旋轉(zhuǎn),如此繼續(xù).類似地,正三角形ABC可以沿x軸負方向滾動.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A、B均為銳角,則cosA>sinB是△ABC為鈍角三角形的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某家庭進行理財投資,根據(jù)長期收益率市場預測,投資債券等穩(wěn)健型產(chǎn)品的一年收益與投資額成正比,其關(guān)系如圖(1);投資股票等風險型產(chǎn)品的一年收益與投資額的算術(shù)平方根成正比,其關(guān)系如圖(2).(注:收益與投資額單位:萬元)
(1)分別寫出兩種產(chǎn)品的一年收益與投資額的函數(shù)關(guān)系;
(2)該家庭現(xiàn)有20萬元資金,全部用于理財投資,問:怎么分配資金能使一年的投資獲得最大收益,其最大收益是多少萬元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com