【題目】設(shè)數(shù)列{an}的前n項和為Sn , 若S2=4,an+1=2Sn+1,n∈N*,則{an}的通項公式為

【答案】an=3n1
【解析】解:∵S2=4,an+1=2Sn+1,n∈N*,
∴a1+a2=4,a2=2a1+1,解得a1=1,a2=3.
n≥2時,an=2Sn1+1,可得:an+1﹣an=2Sn+1﹣(2Sn1+1),
化為:an+1=3an
∴數(shù)列{an}是等比數(shù)列,公比為3,首項為1.
∴an=3n1
所以答案是:an=3n1
【考點精析】本題主要考查了數(shù)列的通項公式的相關(guān)知識點,需要掌握如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},則N∩(UM)等于(
A.{1,3}
B.{1,5}
C.{3,5}
D.{4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)U={0,1,2,3},A={x∈U|x2+mx=0},若UA={1,2},則實數(shù)m=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|x2+x﹣6<0},B={x|3x>1},則A∩(RB)=(
A.(﹣3,1]
B.(1,2)
C.(﹣3,0]
D.[1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一名法官在審理一起珍寶盜竊案時,四名嫌疑人甲、乙、丙、丁的供詞如下,甲說:“罪犯在乙、丙、丁三人之中”:乙說:“我沒有作案,是丙偷的”:丙說:“甲、乙兩人中有一人是小偷”:丁說:“乙說的是事實”.經(jīng)過調(diào)查核實,四人中有兩人說的是真話,另外兩人說的是假話,且這四人中只有一人是罪犯,由此可判斷罪犯是(
A.甲
B.乙
C.丙
D.丁

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知M={x|x=a2+2a+2,a∈N},N={y|y=b2﹣4b+5,b∈N},則M,N之間的關(guān)系是(
A.MN
B.NM
C.M=N
D.M與N之間沒有包含關(guān)系

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合U={1,2,3,4,5},A={1,2,3},B={2,5},則(UA)∩(UB)=(
A.{2}
B.{2,3}
C.{4}
D.{1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+2ax+2,x∈[﹣5,5].
(Ⅰ)當(dāng)a=﹣1時,求函數(shù)f(x)的最大值和最小值;
(Ⅱ)求實數(shù)a的取值范圍,使y=f(x)在區(qū)間[﹣5,5]上是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知x,y都是實數(shù),命題p:|x|<3;命題q:x2﹣2x﹣3<0,則p是q的(
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分又不必要條件

查看答案和解析>>

同步練習(xí)冊答案