分析 根據(jù)極值的意義可知,極值點(diǎn)x1、x2是導(dǎo)函數(shù)d的零點(diǎn),根據(jù)根的分布建立不等關(guān)系,畫出滿足條件的區(qū)域,明確目標(biāo)函數(shù)的幾何意義,即可求得結(jié)論.
解答 解:f′(x)=x2+2ax+2b=g(x),
∵函數(shù)f(x)=$\frac{1}{3}$x3+ax2+2bx+c有兩個(gè)極值點(diǎn)x1,x2,
且-1<x1<1<x2<2,
則x1,x2是函數(shù)g(x)的兩個(gè)零點(diǎn),
∴$\left\{\begin{array}{l}{△=4{a}^{2}-8b>0}\\{g(-1)=1-2a+2b>0}\\{g(1)=1+2a+2b<0}\\{g(2)=4+4a+2b>0}\end{array}\right.$,其中△>0可以去掉.
畫出可行域:平面三角形ABC的內(nèi)部的所有點(diǎn).
A$(0,-\frac{1}{2})$,B$(-\frac{3}{2},1)$,C$(-\frac{1}{2},-1)$.
直線bx-(a-1)y+3=0的斜率k=$\frac{a-1}$,表示經(jīng)過(guò)兩點(diǎn)(a,b),P(1,0)的直線的斜率.
kPC=$\frac{1}{1+\frac{1}{2}}$=$\frac{2}{3}$,kPB=$\frac{1}{-\frac{3}{2}-1}$=-$\frac{2}{5}$.
∴$-\frac{2}{5}<k<\frac{2}{3}$.
故答案為:$(-\frac{2}{5},\frac{2}{3})$.
點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值、解不等式、線性規(guī)劃、二次函數(shù)的性質(zhì),考查了推理能力與計(jì)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年河北正定中學(xué)高二上月考一數(shù)學(xué)(文)試卷(解析版) 題型:填空題
若向量,,則函數(shù)在區(qū)間上的零點(diǎn)個(gè)數(shù)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 一段雙曲線弧 | B. | 一段橢圓弧 | C. | 一段圓弧 | D. | 一段拋物線弧 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年安徽六安一中高一上國(guó)慶作業(yè)二數(shù)學(xué)試卷(解析版) 題型:解答題
已知定義域?yàn)?img src="http://thumb.1010pic.com/pic6/res/GZSX/web/STSource/2018010106020007197894/SYS201801010602145724939854_ST/SYS201801010602145724939854_ST.001.png">的函數(shù)是奇函數(shù).
(1)求的值;
(2)用定義證明在上是單調(diào)遞減函數(shù);
(3)若對(duì)任意,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | $\frac{π}{3}$ | C. | $\frac{3π}{4}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com