若向量,,則函數(shù)在區(qū)間上的零點個數(shù)為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,已知四棱錐P-ABCD中,底面ABCD是直角梯形,∠ADC=90°,AB∥CD,AD=DC=$\frac{1}{2}$AB=$\sqrt{2}$,平面PBC⊥平面ABCD.
(1)求證:AC⊥PB;
(2)若PB=PC=$\sqrt{2}$,問在側(cè)棱PB上是否存在一點M,使得二面角M-AD-B的余弦值為$\frac{{5\sqrt{3}}}{9}$?若存在,求出$\frac{PM}{PB}$的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆安徽合肥一中高三上學(xué)期月考一數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

已知集合,則( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆安徽合肥一中高三上學(xué)期月考一數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

設(shè)命題函數(shù)在定義域上為減函數(shù),命題,當(dāng)時,,以下說法正確的是( )

A.為真 B.為真

C.假 D.均假

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年河北正定中學(xué)高二上月考一數(shù)學(xué)(文)試卷(解析版) 題型:解答題

如圖,在三棱柱中,平面,,,,,分別為、的中點.

(1)求證:平面平面;

(2)求證:平面,并求到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年河北正定中學(xué)高二上月考一數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

設(shè)數(shù)列的前項和,若,且,則等于( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年河北正定中學(xué)高二上月考一數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

下列結(jié)論判斷正確的是( )

A.任意兩條直線確定一個平面

B.三條平行直線最多確定三個平面

C.棱長為1的正方體的內(nèi)切球的表面積為

D.若平面平面,平面平面,則平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年河北正定中學(xué)高二上月考一數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

若不等式表示的平面區(qū)域為,、均為內(nèi)一點,為坐標(biāo)原點,,則下列判斷正確的是( )

A.的最小值為 B.的最小值為

C.的最大值為 D.的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)=$\frac{1}{3}$x3+ax2+2bx+c有兩個極值點x1,x2,且-1<x1<1<x2<2,則直線bx-(a-1)y+3=0的斜率的取值范圍$(-\frac{2}{5},\frac{2}{3})$.

查看答案和解析>>

同步練習(xí)冊答案