【題目】如圖,三棱柱中,,,.
(1)證明:;
(2)若平面平面,,求二面角的余弦值.
【答案】(1)詳見解析(2)
【解析】
(1)取AB的中點O,連接OC,OA1,A1B,由已知可證OA1⊥AB,AB⊥平面OA1C,進而可得AB⊥A1C;
(2)易證OA,OA1,OC兩兩垂直.以O為坐標(biāo)原點,的方向為x軸的正向,||為單位長,建立坐標(biāo)系,求出平面平面BB1C1C的法向量,代入向量夾角公式,可得答案.
(1)取中點,連接,,因為,所以;
因為,,故為等邊三角形,所以;
因為,所以平面;所以.
(2)由(1)可知,,,又因為平面平面,交線為,所以平面,故,,兩兩垂直.以為坐標(biāo)原點,建立空間直角坐標(biāo)系如圖,
因為,所以,所以,,,.
設(shè)是平面的法向量,則,,解得,同理可得,平面的法向量,
,,
所以二面角余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著網(wǎng)絡(luò)的發(fā)展,網(wǎng)上購物越來越受到人們的喜愛,各大購物網(wǎng)站為增加收入,促銷策略越來越多樣化,促銷費用也不斷增加.下表是某購物網(wǎng)站2017年1-8月促銷費用(萬元)和產(chǎn)品銷量(萬件)的具體數(shù)據(jù).
(1)根據(jù)數(shù)據(jù)繪制的散點圖能夠看出可用線性回歸模型擬合與的關(guān)系,請用相關(guān)系數(shù)加以說明;(系數(shù)精確到0.001)
(2)建立關(guān)于的回歸方程(系數(shù)精確到0.01);如果該公司計劃在9月份實現(xiàn)產(chǎn)品銷量超6萬件,預(yù)測至少需投入促銷費用多少萬元(結(jié)果精確到0.01).
參考數(shù)據(jù): , , , , ,其中, 分別為第個月的促銷費用和產(chǎn)品銷量, .
參考公式:(1)樣本的相關(guān)系數(shù)
(2)對于一組數(shù)據(jù), , , ,其回歸方程的斜率和截距的最小二乘估計分別為, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是R上的奇函數(shù),且當(dāng)x>0時,f(x)=-x2+2x+2.
(1)求f(x)的解析式;
(2)畫出f(x)的圖像,并指出f(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(1)當(dāng)時,在給出的坐標(biāo)系中,畫出函數(shù)的大致圖象,根據(jù)圖象寫出函數(shù)的單調(diào)減區(qū)間;
(2)討論關(guān)于的方程解的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一張矩形白紙ABCD,AB=10,AD=,E,F分別為AD,BC的中點,現(xiàn)分別將△ABE,△CDF沿BE,DF折起,且A、C在平面BFDE同側(cè),下列命題正確的是____________(寫出所有正確命題的序號)
①當(dāng)平面ABE∥平面CDF時,AC∥平面BFDE
②當(dāng)平面ABE∥平面CDF時,AE∥CD
③當(dāng)A、C重合于點P時,PG⊥PD
④當(dāng)A、C重合于點P時,三棱錐P-DEF的外接球的表面積為150
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)在區(qū)間上有最大值4,最小值0.
(1)求函數(shù)的解析式;
(2)設(shè),若在時恒成立,求的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司計劃在辦公大廳建一面長為米的玻璃幕墻.先等距安裝根立柱,然后在相鄰的立柱之間安裝一塊與立柱等高的同種規(guī)格的玻璃.一根立柱的造價為6400元,一塊長為米的玻璃造價為元.假設(shè)所有立柱的粗細都忽略不計,且不考慮其他因素,記總造價為元(總造價=立柱造價+玻璃造價).
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)當(dāng)時,怎樣設(shè)計能使總造價最低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),),以為極點,以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè),直線交曲線于兩點,是直線上的點,且,當(dāng)最大時,求點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列{an}的各項均為正數(shù),且a1+2a2=5,4a=a2a6.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足b1=2,且bn+1=bn+an,求數(shù)列{bn}的通項公式;
(3)設(shè),求數(shù)列{cn}的前n項和Tn.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com