(理)已知?jiǎng)狱c(diǎn)分別在軸、軸上,且滿足,點(diǎn)在線段上,且是不為零的常數(shù))。設(shè)點(diǎn)的軌跡為曲線。

(1)   求點(diǎn)的軌跡方程;

(2)   若,點(diǎn)上關(guān)于原點(diǎn)對(duì)稱的兩個(gè)動(dòng)點(diǎn)(不在坐標(biāo)軸上),點(diǎn),求的面積的最大值。

 

(文)已知:函數(shù)f(x)=a+ (a>1) 

   (1) 證明:函數(shù)f(x)在(-1,+∞ )上為增函數(shù);

   (2)證明方程f(x)=0沒有負(fù)根.

 

 

 

 

【答案】

 (理)(1)設(shè)A(a,0),B(0,b),P(x,y),由——2’

得點(diǎn)P軌跡方程為——2’

當(dāng)時(shí),C的方程為——1’

設(shè)直線方程為與C方程聯(lián)立得-1=0

易得

——2’

點(diǎn)Q到直線的距離為——2’

,當(dāng)且僅當(dāng)-2時(shí)——1’

S有最大值——2’

 

 (文)證明:(1) 設(shè)-1<x­1<x2<+∞

f(x1)-f(x2) =a-a + -

=a-a +          (4)

 ∵  -1<x1<x2 ,a>0

 ∴  a-a<0     <0

 ∴  f(x1)-f(x2)<0  即  f(x1)<f(x2) ,函數(shù)f(x)在(-1,+∞ )上為增函數(shù).       (6)

 (2)  若方程有負(fù)根x0 (x0≠-1),則有a= -1

   若  x0<-1 , -1<-1   而 a>0    故  a ≠ -1           (10)

   若 -1<x0<0 ,   -1>2    而 a<a0=1  a ≠ -1

綜上所述,方程f(x)=0沒有負(fù)根.  

                                                                          (12)

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)[理]如圖,已知?jiǎng)狱c(diǎn)A,B分別在圖中拋物線y2=4x及橢圓
x2
4
+
y2
3
=1
的實(shí)線上運(yùn)動(dòng),若AB∥x軸,點(diǎn)N的坐標(biāo)為(1,0),則△ABN的周長l的取值范圍是
 

[文]點(diǎn)P是曲線y=x2-lnx上任意一點(diǎn),則P到直線y=x-2的距離的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年萊陽一中期末理)(12分)已知?jiǎng)狱c(diǎn)A、B分別在x、y軸上,且滿足,點(diǎn)P在線段AB上,且 (t是不為零的常數(shù)).設(shè)點(diǎn)P的軌跡方程為C。

    (1)求點(diǎn)P的軌跡方程C;

    (2)若t=2,點(diǎn)M、N是C上關(guān)于原點(diǎn)對(duì)稱的兩個(gè)動(dòng)點(diǎn)(M、N不在坐標(biāo)軸上),點(diǎn)Q坐標(biāo)為(,3),求△QMN的面積S最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年吉林省高三上學(xué)期期末質(zhì)量檢測數(shù)學(xué) 題型:解答題

(理)已知?jiǎng)狱c(diǎn)分別在軸、軸上,且滿足,點(diǎn)在線段上,且

是不為零的常數(shù))。設(shè)點(diǎn)的軌跡為曲線。

(1)   求點(diǎn)的軌跡方程;

(2)   若,點(diǎn)上關(guān)于原點(diǎn)對(duì)稱的兩個(gè)動(dòng)點(diǎn)(不在坐標(biāo)軸上),點(diǎn)

(3)   求的面積的最大值。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

[理] 如圖,已知?jiǎng)狱c(diǎn)分別在圖中拋物線及橢圓的實(shí)線上運(yùn)動(dòng),若軸,點(diǎn)的坐標(biāo)為,則的周長的取值范圍是    ▲   

查看答案和解析>>

同步練習(xí)冊答案