【題目】函數(shù)f(x)=sin(2x+θ)+ cos(2x+θ),(|θ|< )的圖象關(guān)于點(diǎn) 對稱,則f(x)的增區(qū)間( )
A.
B.
C.
D.
【答案】D
【解析】解:f(x)=sin(2x+θ)+ cos(2x+θ),
=2sin(2x+θ+ ),
∵圖象關(guān)于點(diǎn) 對稱,
∴2× +θ+ =kπ,(k∈Z)
∴θ=kπ ,(k∈Z),
∵|θ|< ,
∴ ,
∴f(x)=2sin(2x+ );
由 (k∈Z)
解得: (k∈Z)
∴函數(shù)f(x)的增區(qū)間為 .
故選D.
【考點(diǎn)精析】通過靈活運(yùn)用兩角和與差的正弦公式和正弦函數(shù)的單調(diào)性,掌握兩角和與差的正弦公式:;正弦函數(shù)的單調(diào)性:在上是增函數(shù);在上是減函數(shù)即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 的圖像與x軸恰有兩個公共點(diǎn),則c= ( )
A.-2或2
B.-9或3
C.-1或1
D.-3或1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若圓x2+y2﹣4x﹣4y﹣10=0上至少有三個不同點(diǎn)到直線l:ax+by=0的距離為 .則直線l的傾斜角的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=ax2﹣(a+1)x+1
(1)解關(guān)于x的不等式f(x)>0;
(2)若對任意的a∈[﹣1,1],不等式f(x)>0恒成立,求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是雙曲線的左右焦點(diǎn),以為直徑的圓與雙曲線的一條漸近線交于點(diǎn),與雙曲線交于點(diǎn),且均在第一象限,當(dāng)直線時,雙曲線的離心率為,若函數(shù),則()
A. 1 B. C. 2 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)生對一些對數(shù)進(jìn)行運(yùn)算,如圖表格所示:
x | 0.21 | 0.27 | 1.5 | 2.8 |
lgx | 2a+b+c﹣3(1) | 6a﹣3b﹣2(2) | 3a﹣b+c(3) | 1﹣2a+2b﹣c(4) |
x | 3 | 5 | 6 | 7 |
lgx | 2a﹣b(5) | a+c(6) | 1+a﹣b﹣c(7) | 2(a+c)(8) |
x | 8 | 9 | 14 | |
lgx | 3﹣3a﹣3c(9) | 4a﹣2b(10) | 1﹣a+2b(11) |
現(xiàn)在發(fā)覺學(xué)生計算中恰好有兩次地方出錯,那么出錯的數(shù)據(jù)是( )
A.(3),(8)
B.(4),(11)
C.(1),(3)
D.(1),(4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,扇形,圓心角的大小等于,半徑為2,在半徑上有一動點(diǎn),過點(diǎn)作平行于的直線交弧于點(diǎn).
(1)若是半徑的中點(diǎn),求線段的大;
(2)設(shè),求面積的最大值及此時的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+1(a>0),g(x)=x3+bx.
(1)若曲線y=f(x)與曲線y=g(x)在它們的交點(diǎn)(1,c)處有公共切線,求a,b的值;
(2)當(dāng)a=3,b=﹣9時,函數(shù)f(x)+g(x)在區(qū)間[k,2]上的最大值為28,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品的廣告費(fèi)支出x與銷售額y(單位:百萬元)之間有如下對應(yīng):
X | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(1)求回歸直線方程.
(2)回歸直線必經(jīng)過的一點(diǎn)是哪一點(diǎn)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com