精英家教網 > 高中數學 > 題目詳情

【題目】若直線y=x+b與曲線 有公共點,則b的取值范圍是(
A.[ , ]
B.[ ,3]
C.[﹣1, ]
D.[ ,3]

【答案】D
【解析】解:曲線方程可化簡為(x﹣2)2+(y﹣3)2=4(1≤y≤3),
即表示圓心為(2,3)半徑為2的半圓,如圖
依據數形結合,當直線y=x+b與此半圓相切時須滿足圓心(2,3)到直線y=x+b距離等于2,即 解得 ,
因為是下半圓故可知 (舍),故
當直線過(0,3)時,解得b=3,
,
故選D.

本題要借助圖形來求參數b的取值范圍,曲線方程可化簡為(x﹣2)2+(y﹣3)2=4(1≤y≤3),即表示圓心為(2,3)半徑為2的半圓,畫出圖形即可得出參數b的范圍.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設函數,mR

(Ⅰ)當m=e(e為自然對數的底數)時,求f(x)的極小值;

(Ⅱ)討論函數零點的個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數fx=alnx﹣x2+1.

)若曲線y=fx)在x=1處的切線方程為4x﹣y+b=0,求實數ab的值;

)討論函數fx)的單調性;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】三棱錐P﹣ABC中,已知PA=PB=PC=AC=4,BC= AB=2 ,O為AC中點.

(1)求證:PO⊥平面ABC;
(2)求異面直線AB與PC所成角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】橢圓C的中心在坐標原點,焦點在x軸上,該橢圓經過點 且離心率為
(1)求橢圓C的標準方程;
(2)若直線l:y=kx+m與橢圓C相交A,B兩點(A,B不是左右頂點),且以AB為直徑的圓過橢圓C的右頂點,求證:直線l過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知二次函數f(x)=x2+mx+n(m、n∈R)的兩個零點分別在(0,1)與(1,2)內,則(m+1)2+(n﹣2)2的取值范圍是(
A.
B.
C.[2,5]
D.(2,5)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設f(x)是定義在[﹣1,1]上的奇函數,且對任意a、b∈[﹣1,1],當a+b≠0時,都有 >0.
(1)若a>b,比較f(a)與f(b)的大小;
(2)解不等式f(x﹣ )<f(x﹣ );
(3)記P={x|y=f(x﹣c)},Q={x|y=f(x﹣c2)},且P∩Q=,求c的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= (m,n為常數)是定義在[﹣1,1]上的奇函數,且f(﹣1)=﹣
(1)求函數f(x)的解析式;
(2)解關于x的不等式f(2x﹣1)<﹣f(x).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知冪函數f(x)=(﹣2m2+m+2)xm+1為偶函數.
(1)求f(x)的解析式;
(2)若函數y=f(x)﹣2(a﹣1)x+1在區(qū)間(2,3)上為單調函數,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案