等差數(shù)列{an}的前n項和是Sn,滿足條件a6是a2,S4的等差中項,且數(shù)列首項為1.
(1)求等差數(shù)列{an}的公差d;
(2)設bn=
1
S
 
n
,數(shù)列{bn}的前n項和為Tn,是否存在實數(shù)λ,使得Tn<λan+1對一切n∈N*都成立?若存在,求出λ的取值范圍,若不存在說明理由.
考點:數(shù)列與不等式的綜合,等差數(shù)列的前n項和
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:(1)利用等差數(shù)列{an}滿足條件a6是a2,S4的等差中項,且數(shù)列首項為1,建立方程,即可求等差數(shù)列{an}的公差d;
(2)求出數(shù)列{bn}的通項,利用Tn<λan+1對一切n∈N*都成立,即可求出λ的取值范圍.
解答: 解:(1)∵等差數(shù)列{an}滿足條件a6是a2,S4的等差中項,且數(shù)列首項為1,
∴2(1+5d)=1+d+4+6d,
∴d=1;
(2)Sn=n+
n(n-1)
2
=
n(n+1)
2

∴bn=
1
S
 
n
=2(
1
n
-
1
n+1)
),
∴Tn=2(1-
1
2
+
1
2
-
1
3
+…
1
n
-
1
n+1)
)=2(1-
1
n+1)
)=
2n
n+1
,
∵Tn<λan+1對一切n∈N*都成立,
2n
n+1
<λ•n對一切n∈N*都成立,
∴λ>
2
n+1
,
∴λ>1.
點評:本題考查等差數(shù)列的通項與性質(zhì),考查數(shù)列的求和,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設Sn是等差數(shù)列{an}的前n項和,且S6=3,S12=-30,數(shù)列{bn}滿足bn=
4Sn
n
,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

調(diào)查某校高三年級500名學生的肥胖情況,得到下表:
偏瘦正常偏胖
女生(人)x120y
男生(人)50180z
已知從這批學生中隨機抽取1名學生,抽到偏瘦女生的概率為0.1.
(1)求x的值;
(2)若用分層抽樣的方法,從這批學生中隨機抽取50名,問應在偏胖學生中抽多少名?
(3)已知y≥46,z≥46,求偏胖學生中男生人數(shù)大于女生人數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是菱形,AC,BD交于點O,A1O⊥平面ABCD,A1A=BD=2,AC=2
2

(1)證明:A1C⊥平面BB1D1D;
(2)求三棱錐A-C1CD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}滿足a1=3,且2,
an+1+an+1
,n+3成等比數(shù)列.
(Ⅰ)求a2,a3,a4以及數(shù)列{an}的通項公式an(要求寫出推導過程);
(Ⅱ)令Tn=a1a2-a2a3+a3a4-a4a5+…a2na2n+1,求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

現(xiàn)有一個尋寶游戲,規(guī)則如下:在起點P處有A、B、C三條封閉的單向線路,走完這三條線路所花費的時間分別為10分鐘、20分鐘、30分鐘,游戲主辦方將寶物放置在B線路上(參賽方并不知曉),開始尋寶時參賽方在起點處隨機選擇路線順序,若沒有尋到寶物,重新回到起點后,再從沒有走過的線路中隨機選擇路線繼續(xù)尋寶,直到尋到寶物并將其帶回至P處,期間所花費的時間記為X.
(1)求X≤30分鐘的概率;
(2)求X的分布列及EX的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
3
+y2=1,圓O:x2+y2=4上一點A(0,2).
(Ⅰ)過點A作兩條直線l1、l2都與橢圓C相切,求直線l1、l2的方程并判斷其位置關(guān)系;
(Ⅱ)有同學經(jīng)過探究后認為:過圓O上任間一點P作橢圓C的兩條切線l1、l2,則直線l1、l2始終相互垂直,請問這位同學的觀點正確嗎?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“學習曲線”可以用來描述學習某一任務的速度,假設函數(shù)t=-144lg(1-
N
90
)中,t表示達到某一英文打字水平所需的學習時間,N表示每分鐘打出的字數(shù).則當N=40時,t=
 
 (已知lg2≈0.301,lg3≈0.477)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}滿足a1=2,an+1=
1+an
1-an
 n∈N*,記Tn=a1a2…an,則T2010等于
 

查看答案和解析>>

同步練習冊答案