【題目】已知函數(shù)f(x)=
(1)判斷函數(shù)f(x)的奇偶性,并證明.
(2)求函數(shù)f(x)的單調(diào)性及值域.
【答案】
(1)解:函數(shù)的定義域為R,
則f(﹣x)= =﹣ =﹣f(x),
即函數(shù)f(x)為奇函數(shù)
(2)解:f(x)= =1﹣ ,
∵y=2x為增函數(shù),∴y=2x+1為增函數(shù),
則f(x)= =1﹣ 為增函數(shù),
由y=f(x)= 得(1﹣y)2x=1+y,
當(dāng)y=1時,不成立,則方程等價為2x= ,
由2x= >0,解得﹣1<y<1,
故函數(shù)的值域為(﹣1,1)
【解析】(1)根據(jù)函數(shù)奇偶性的定義即可判斷函數(shù)f(x)的奇偶性,并證明.(2)根據(jù)指數(shù)函數(shù)的性質(zhì)即可求函數(shù)f(x)的單調(diào)性及值域.
【考點精析】利用函數(shù)單調(diào)性的判斷方法和函數(shù)的奇偶性對題目進(jìn)行判斷即可得到答案,需要熟知單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較;偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)=x2+bx+c,當(dāng)x∈R時f(x)=f(2﹣x)恒成立,且3是f(x)的一個零點. (Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)設(shè)g(x)=f(ax)(a>1),若函數(shù)g(x)在區(qū)間[﹣1,1]上的最大值等于5,求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高考復(fù)習(xí)經(jīng)過二輪“見多識廣”之后,為了研究考前“限時搶分”強(qiáng)化訓(xùn)練次數(shù)與答題正確率﹪的關(guān)系,對某校高三某班學(xué)生進(jìn)行了關(guān)注統(tǒng)計,得到如下數(shù)據(jù):
1 | 2 | 3 | 4 | |
20 | 30 | 50 | 60 |
(1)求關(guān)于的線性回歸方程,并預(yù)測答題正確率是100﹪的強(qiáng)化訓(xùn)練次數(shù);
(2)若用表示統(tǒng)計數(shù)據(jù)的“強(qiáng)化均值”(精確到整數(shù)),若“強(qiáng)化均值”的標(biāo)準(zhǔn)差在區(qū)間內(nèi),則強(qiáng)化訓(xùn)練有效,請問這個班的強(qiáng)化訓(xùn)練是否有效?
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
=, =- ,
樣本數(shù)據(jù)的標(biāo)準(zhǔn)差為:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=﹣x2+2x+5,令g(x)=(2﹣2a)x﹣f(x)
(1)若函數(shù)g(x)在x∈[0,2]上是單調(diào)增函數(shù),求實數(shù)a的取值范圍;
(2)求函數(shù)g(x)在x∈[0,2]的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面為正方形, 平面, , , 分別是, 的中點.
(Ⅰ)求證: 平面;
(Ⅱ)求三棱錐的體積;
(Ⅲ)求證:平面平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:在等式 中,把, , ,…, 叫做三項式的次系數(shù)列(如三項式的1次系數(shù)列是1,1,1).
(1)填空:三項式的2次系數(shù)列是_______________;
三項式的3次系數(shù)列是_______________;
(2)由楊輝三角數(shù)陣表可以得到二項式系數(shù)的性質(zhì),類似的請用三項式次系數(shù)列中的系數(shù)表示 (無須證明);
(3)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=mx2﹣2x+1有且僅有一個為正實數(shù)的零點,則實數(shù)m的取值范圍是( )
A.(﹣∞,1]
B.(﹣∞,0]∪{1}
C.(﹣∞,0)∪(0,1]
D.(﹣∞,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若當(dāng)x∈R時,函數(shù)f(x)=a|x|始終滿足0<|f(x)|≤1,則函數(shù)y=loga| |的圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,橢圓: 的離心率為,直線l:y=2上的點和橢圓上的點的距離的最小值為1.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 已知橢圓的上頂點為A,點B,C是上的不同于A的兩點,且點B,C關(guān)于原點對稱,直線AB,AC分別交直線l于點E,F.記直線與的斜率分別為, .
① 求證: 為定值;
② 求△CEF的面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com