【題目】設(shè)復數(shù),其中xnynRnN*,i為虛數(shù)單位,,z1=3+4i,復數(shù)zn在復平面上對應(yīng)的點為Zn.

1)求復數(shù)z2,z3,z4的值;

2)是否存在正整數(shù)n使得?若存在,求出所有滿足條件的;若不存在,請說明理由;

3)求數(shù)列的前項之和.

【答案】1z2=1+7i,z3=8+6i,z4=142i;(2)存在,n=4k+1,kN;(31+2102

【解析】

1)利用已知條件之間求解z2,z3z4;

2)求出,利用復數(shù)的冪運算,求解即可;

3)通過,推出xn+4=4xn,yn+4=4yn,得到xn+4yn+4=16xnyn,然后求解數(shù)列的和即可.

1z2=1+i)(3+4i=1+7i,,.

2)若,則存在實數(shù)λ,使得,故

即(xn,yn=λx1,y1),

zn+1=1+izn,故,即為實數(shù),

,,故n14的倍數(shù),即n1=4k,n=4k+1kN;

3)因為,故xn+4=4xn,yn+4=4yn,所以xn+4yn+4=16xnyn,

x1y1=12,x2y2=7,x3y3=48,x4y4=28,

x1y1+x2y2+x3y3+…+x100y100

=x1y1+x2y2+x3y3+x4y4+x5y5+x6y6+x7y7+x8y8+…+x97y97+x98y98+x99y99+x100y100

=

,,

所以數(shù)列{xnyn}的前102項之和為12100+12×21007×2100=1+2102.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】高三年級某班50名學生期中考試數(shù)學成績的頻率分布直方圖如圖所示,成績分組區(qū)間為:.其中a,b,c成等差數(shù)列且.物理成績統(tǒng)計如表.(說明:數(shù)學滿分150分,物理滿分100分)

分組

頻數(shù)

6

9

20

10

5

1)根據(jù)頻率分布直方圖,請估計數(shù)學成績的平均分;

2)根據(jù)物理成績統(tǒng)計表,請估計物理成績的中位數(shù);

3)若數(shù)學成績不低于140分的為“優(yōu)”,物理成績不低于90分的為“優(yōu)”,已知本班中至少有一個“優(yōu)”同學總數(shù)為6人,從數(shù)學成績?yōu)椤皟?yōu)”的同學中隨機抽取2人,求兩人恰好均為物理成績“優(yōu)”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】北京聯(lián)合張家口獲得2022年第24屆冬奧會舉辦權(quán),我國各地掀起了發(fā)展冰雪運動的熱潮,現(xiàn)對某高中的學生對于冰雪運動是否感興趣進行調(diào)查,該高中男生人數(shù)是女生的1.2倍,按照分層抽樣的方法,從中抽取110人,調(diào)查高中生是否對冰雪運動感興趣得到如下列聯(lián)表:

感興趣

不感興趣

合計

男生

40

女生

30

合計

110

1)補充完成上述列聯(lián)表;

2)是否有99%的把握認為是否喜愛冰雪運動與性別有關(guān).

附: (其中.

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面是邊長為的正方形,平面平面,的中點.

1)求證:平面;

2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四個命題:①任意兩條直線都可以確定一個平面;②若兩個平面有3個不同的公共點,則這兩個平面重合;③直線a,b,c,若ab共面,bc共面,則ac共面;④若直線l上有一點在平面α外,則l在平面α.其中錯誤命題的個數(shù)是( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù),若存在定義域內(nèi)某個區(qū)間,使得上的值域也是,則稱函數(shù)在定義域上封閉.如果函數(shù)上封閉,那么實數(shù)的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,正方體ABCDABCD′的棱長為1,EF分別是棱AA′,CC′的中點,過直線E,F的平面分別與棱BB′、DD′交于M,N,設(shè)BMx,x∈[0,1],給出以下四個命題:

平面MENF⊥平面BDDB′;

當且僅當x時,四邊形MENF的面積最。

四邊形MENF周長Lfx),x∈[0,1]是單調(diào)函數(shù);

四棱錐C′﹣MENF的體積Vhx)為常函數(shù);

以上命題中假命題的序號為( 。

A. ①④B. C. D. ③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學習小組在生物研究性學習中,對春季晝夜溫差大小與黃豆種子發(fā)芽多少之間的關(guān)系進行研究,于是小組成員在3月份的31天中隨機挑選了5天進行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:

日期

32

38

315

322

328

溫差/

10

11

13

12

8

發(fā)芽數(shù)/

23

25

30

26

14

1)在這個學習小組中負責統(tǒng)計數(shù)據(jù)的那位同學為了減少計算量,他從這5天中去掉了32日與328日的兩組數(shù)據(jù),請根據(jù)這5天中的另三天的數(shù)據(jù),求出關(guān)于的線性回歸方程

2)若由線性回歸方程得到的估計數(shù)據(jù)與所去掉的試驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?

(參考公式:,)(參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線 經(jīng)過伸縮變換后得到曲線.以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(Ⅰ)求出曲線、的參數(shù)方程;

(Ⅱ)若、分別是曲線上的動點,求的最大值.

查看答案和解析>>

同步練習冊答案