【題目】某城市隨機(jī)抽取一年365天內(nèi)100天的空氣質(zhì)量指數(shù)的檢測數(shù)據(jù),結(jié)果統(tǒng)計(jì)如下

記某企業(yè)每天由空氣污染造成的經(jīng)濟(jì)損失單位:元,空氣質(zhì)量指數(shù)在區(qū)間對企業(yè)沒有造成經(jīng)濟(jì)損失;在區(qū)間對企業(yè)造成經(jīng)濟(jì)損失成直線模型當(dāng)150時(shí)造成的經(jīng)濟(jì)損失為500元,當(dāng)200時(shí),造成的經(jīng)濟(jì)損失為700元;當(dāng)大于300時(shí)造成的經(jīng)濟(jì)損失為2000元.

1試寫出的表達(dá)式;

2試估計(jì)在本年內(nèi)隨機(jī)抽取一天,該天經(jīng)濟(jì)損失大于200元且不超過600元的概率;

3若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有8天為重度污染,完成下面列聯(lián)表并判斷

能否有的把握認(rèn)為該市本年空氣重度污染與供暖有關(guān)?

附:

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.32

2.07

2.70

3.74

5.02

6.63

7.87

10.82

非重度污染

重度污染

合計(jì)

供暖季

非供暖季

合計(jì)

100

【答案】1 2 ;3列聯(lián)表見解析,的把握認(rèn)為該市本年空氣重度污染與供暖有關(guān).

【解析】

試題分析:1根據(jù)在區(qū)間對企業(yè)沒有造成經(jīng)濟(jì)損失;在區(qū)間對企業(yè)造成經(jīng)濟(jì)損失成直線模型當(dāng)時(shí)造成的經(jīng)濟(jì)損失為元,當(dāng)時(shí),造成的經(jīng)濟(jì)損失為;當(dāng)大于時(shí)造成的經(jīng)濟(jì)損失為元,可得函數(shù)解析式;2,得,頻數(shù)為,即可求出概率;3根據(jù)所給的數(shù)據(jù),列出列聯(lián)表,根據(jù)所給的觀測值的公式,代入數(shù)據(jù)做出觀測值,同臨界值進(jìn)行比較,即可得出結(jié)論.

試題解析:1根據(jù)在區(qū)間對企業(yè)沒有造成經(jīng)濟(jì)損失;在區(qū)間對企業(yè)造成經(jīng)濟(jì)損失成直線模型當(dāng)時(shí)造成的經(jīng)濟(jì)損失為元,當(dāng)時(shí),造成的經(jīng)濟(jì)損失為;當(dāng)大于時(shí)造成的經(jīng)濟(jì)損失為元,可得

2設(shè)在本年內(nèi)隨機(jī)抽取一天,該天經(jīng)濟(jì)損失大于元且不超過為事件

,得,頻數(shù)為39,

3根據(jù)以上數(shù)據(jù)得到如下列聯(lián)表:

非重度污染

重度污染

合計(jì)

供暖季

非供暖季

合計(jì)

的觀測值,

所以有的把握認(rèn)為空氣重度污染與供暖有關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1的單調(diào)區(qū)間

2為整數(shù), 且當(dāng)時(shí),, 的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高一(1)班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如圖.

(Ⅰ)求分?jǐn)?shù)在[50,60)的頻率及全班人數(shù);

(Ⅱ)求分?jǐn)?shù)在[80,90)之間的頻數(shù),并計(jì)算頻率分布直方圖中[80,90)間矩形的高;

(Ⅲ)若要從分?jǐn)?shù)在[80,100)之間的試卷中任取兩份分析學(xué)生失分情況,求在抽取的試卷中,至少有一份分?jǐn)?shù)在[90,100)之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種商品原來每件售價(jià)為25元,年銷售8萬件.

(1)據(jù)市場調(diào)查,若價(jià)格每提高1元,銷售量將相應(yīng)減少2000件,要使銷售的總收入不低于原收入,該商品每件定價(jià)最多為多少元?

(2)為了擴(kuò)大該商品的影響力,提高年銷售量,公司決定明年對該商品進(jìn)行全面技術(shù)革新和營銷策略改革,并提高定價(jià)到元,公司擬投入萬元作為技改費(fèi)用,投入50萬元作為固定宣傳費(fèi)用,投入作為浮動宣傳費(fèi)用.試問:當(dāng)該商品明年的銷售量至少應(yīng)達(dá)到多少萬件時(shí),才可能使明年的銷售收入不低于原收入與總投入之和?并求出此時(shí)商品的每件定價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1處取得極小值,的值;

2上恒成立的取值范圍;

3求證:當(dāng)時(shí)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合為函數(shù)的定義域,集合為不等式的解集.

(1)若,求;

(2)若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸為正半軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為,直線的參數(shù)方程為t為參數(shù)).

1)求圓的直角坐標(biāo)方程;

2)求直線分圓所得的兩弧程度之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題p:方程沒有實(shí)數(shù)根(),命題q:定義域?yàn)镽,若命題p為真命題,p 為假命題,求k的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中有20個(gè)大小相同的球,其中記上0號的有10個(gè),記上n號的有n個(gè)n=1,2,3,4,現(xiàn)從袋中任取一球,X表示所取球的標(biāo)號.

1求X的分布列,均值和方差;

2若Y=aX+b,EY=1,DY=11,試求a,b的值.

查看答案和解析>>

同步練習(xí)冊答案