【題目】已知橢圓的離心率,一條準線方程為
⑴求橢圓的方程;
⑵設(shè)為橢圓上的兩個動點,為坐標原點,且.
①當(dāng)直線的傾斜角為時,求的面積;
②是否存在以原點為圓心的定圓,使得該定圓始終與直線相切?若存在,請求出該定圓方程;若不存在,請說明理由.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=a(x2﹣1)﹣lnx.
(1)若y=f(x)在x=2處的切線與y垂直,求a的值;
(2)若f(x)≥0在[1,+∞)上恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,直線與相切,求的值;
(2)若函數(shù)在內(nèi)有且只有一個零點,求此時函數(shù)的單調(diào)區(qū)間;
(3)當(dāng)時,若函數(shù)在上的最大值和最小值的和為1,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】雙曲線的左焦點為,點A的坐標為(0,1),點P為雙曲線右支上的動點,且△APF1周長的最小值為6,則雙曲線的離心率為( )
A.B.C.2D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個焦點分別為,離心率為,過的直線與橢圓交于兩點,且的周長為
(1)求橢圓的方程;
(2)若直線與橢圓分別交于兩點,且,試問點到直線的距離是否為定值,證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的離心率,且過點.
(1)求橢圓的方程;
(2)如圖,過橢圓的右焦點作兩條相互垂直的直線交橢圓分別于,且滿足, ,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點,且橢圓的離心率.
(1)求橢圓的標淮方程;
(2)直線過點且與橢圓相交于、兩點,橢圓的右頂點為,試判斷是否能為直角.若能為直角,求出直線的方程,若不行,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰中,斜邊,為直角邊上的一點,將沿直線折疊至的位置,使得點在平面外,且點在平面上的射影在線段上設(shè),則的取值范圍是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com