【題目】如圖,在等腰中,斜邊,為直角邊上的一點(diǎn),將沿直線折疊至的位置,使得點(diǎn)在平面外,且點(diǎn)在平面上的射影在線段上設(shè),則的取值范圍是( )

A. B. C. D.

【答案】B

【解析】

推導(dǎo)出ACBC=1,∠ACB=90°,AC1AC=1,CDC1D(0,1),∠AC1D=90°,CH⊥平面ABC,從而AHAC1=1,當(dāng)CD=1時(shí),BD重合,AH,當(dāng)CD<1時(shí),AH,由此能求出x的取值范圍.

解:∵在等腰Rt△ABC中,斜邊AB,D為直角邊BC上的一點(diǎn),

ACBC=1,∠ACB=90°,

將△ACD沿直AD折疊至△AC1D的位置,使得點(diǎn)C1在平面ABD外,

且點(diǎn)C1在平面ABD上的射影H在線段AB上,設(shè)AHx

AC1AC=1,CDC1D(0,1),∠AC1D=90°,

CH⊥平面ABC,

AHAC1=1,故排除選項(xiàng)A和選項(xiàng)C;

當(dāng)CD=1時(shí),BD重合,AH

當(dāng)CD<1時(shí),AH

D為直角邊BC上的一點(diǎn),

CD(0,1),∴x的取值范圍是(,1).

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

(1)若,判斷函數(shù)的單調(diào)性;

(2)證明: ,;

(3)設(shè) ,對,有恒成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020110日,引發(fā)新冠肺炎疫情的COVID-9病毒基因序列公布后,科學(xué)家們便開始了病毒疫苗的研究過程.但是類似這種病毒疫苗的研制需要科學(xué)的流程,不是一朝一夕能完成的,其中有一步就是做動物試驗(yàn).已知一個(gè)科研團(tuán)隊(duì)用小白鼠做接種試驗(yàn),檢測接種疫苗后是否出現(xiàn)抗體.試驗(yàn)設(shè)計(jì)是:每天接種一次,3天為一個(gè)接種周期.已知小白鼠接種后當(dāng)天出現(xiàn)抗體的概率為,假設(shè)每次接種后當(dāng)天是否出現(xiàn)抗體與上次接種無關(guān).

1)求一個(gè)接種周期內(nèi)出現(xiàn)抗體次數(shù)的分布列;

2)已知每天接種一次花費(fèi)100元,現(xiàn)有以下兩種試驗(yàn)方案:

①若在一個(gè)接種周期內(nèi)連續(xù)2次出現(xiàn)抗體即終止本周期試驗(yàn),進(jìn)行下一接種周期,試驗(yàn)持續(xù)三個(gè)接種周期,設(shè)此種試驗(yàn)方式的花費(fèi)為元;

②若在一個(gè)接種周期內(nèi)出現(xiàn)2次或3次抗體,該周期結(jié)束后終止試驗(yàn),已知試驗(yàn)至多持續(xù)三個(gè)接種周期,設(shè)此種試驗(yàn)方式的花費(fèi)為元.

比較隨機(jī)變量的數(shù)學(xué)期望的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于異面直線ab,下列四個(gè)命題正確的有(

A.過直線a有且僅有一個(gè)平面β,使bβ

B.過直線a有且僅有一個(gè)平面β,使b//β

C.在空間存在平面β,使a//β,b//β

D.在空間不存在平面β,使aβ,bβ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知隨機(jī)變量X服從正態(tài)分布N100,100),則下列選項(xiàng)正確的是(

(參考數(shù)值:隨機(jī)變量ξ服從正態(tài)分布,則Pμσξμ+σ)=0.6826),Pμ2σξμ+2σ)=0.9544Pμ3σξμ+3σ)=0.9974

A.EX)=100B.DX)=100

C.PX≥90)=0.8413D.PX≤120)=0.9987

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知梯形ABCD中,,如圖(1)所示.現(xiàn)將△ABC沿邊BC翻折至A'BC,記二面角A'—BCD的大小為θ.

1)當(dāng)θ90°時(shí),如圖(2)所示,過點(diǎn)B作平面與AD垂直,分別交于點(diǎn)E,F,求點(diǎn)E到平面的距離;

2)當(dāng)時(shí),如圖(3)所示,求二面角的正切值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題10分)選修4—4:坐標(biāo)系與參數(shù)方程

已知曲線C1的參數(shù)方程為t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2sinθ。

)把C1的參數(shù)方程化為極坐標(biāo)方程;

)求C1C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《最強(qiáng)大腦》是江蘇衛(wèi)視引進(jìn)德國節(jié)目《SuperBrain》而推出的大型科學(xué)競技真人秀節(jié)目.節(jié)目籌備組透露挑選選手的方式:不但要對空間感知、照相式記憶進(jìn)行考核,而且要讓選手經(jīng)過名校最權(quán)威的腦力測試,120分以上才有機(jī)會入圍.某重點(diǎn)高校準(zhǔn)備調(diào)查腦力測試成績是否與性別有關(guān),在該高校隨機(jī)抽取男、女學(xué)生各100名,然后對這200名學(xué)生進(jìn)行腦力測試.規(guī)定:分?jǐn)?shù)不小于120分為“入圍學(xué)生”,分?jǐn)?shù)小于120分為“未入圍學(xué)生”.已知男生入圍24人,女生未入圍80.

1)根據(jù)題意,填寫下面的列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有以上的把握認(rèn)為腦力測試后是否為“入圍學(xué)生”與性別有關(guān);

性別

入圍人數(shù)

未入圍人數(shù)

總計(jì)

男生

24

女生

80

總計(jì)

2)用分層抽樣的方法從“入圍學(xué)生”中隨機(jī)抽取11名學(xué)生,然后再從這11名學(xué)生中抽取3名參加某期《最強(qiáng)大腦》,設(shè)抽到的3名學(xué)生中女生的人數(shù)為,求的分布列及數(shù)學(xué)期望.

附:,其中.

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠共有男女員工500人,現(xiàn)從中抽取100位員工對他們每月完成合格產(chǎn)品的件數(shù)統(tǒng)計(jì)如下:

每月完成合格產(chǎn)品的件數(shù)(單位:百件)

頻數(shù)

10

45

35

6

4

男員工人數(shù)

7

23

18

1

1

(1)其中每月完成合格產(chǎn)品的件數(shù)不少于3200件的員工被評為“生產(chǎn)能手”.由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并判斷是否有95%的把握認(rèn)為“生產(chǎn)能手”與性別有關(guān)?

非“生產(chǎn)能手”

“生產(chǎn)能手”

合計(jì)

男員工

女員工

合計(jì)

(2)為提高員工勞動的積極性,工廠實(shí)行累進(jìn)計(jì)件工資制:規(guī)定每月完成合格產(chǎn)品的件數(shù)在定額2600件以內(nèi)的,計(jì)件單價(jià)為1元;超出件的部分,累進(jìn)計(jì)件單價(jià)為1.2元;超出件的部分,累進(jìn)計(jì)件單價(jià)為1.3元;超出400件以上的部分,累進(jìn)計(jì)件單價(jià)為1.4元.將這4段中各段的頻率視為相應(yīng)的概率,在該廠男員工中選取1人,女員工中隨機(jī)選取2人進(jìn)行工資調(diào)查,設(shè)實(shí)得計(jì)件工資(實(shí)得計(jì)件工資=定額計(jì)件工資+超定額計(jì)件工資)不少于3100元的人數(shù)為,求的分布列和數(shù)學(xué)期望.

附:,

.

查看答案和解析>>

同步練習(xí)冊答案