過(guò)雙曲線C:-=1的右頂點(diǎn)作x軸的垂線,與C的一條漸近線相交于點(diǎn)A,若以C的右焦點(diǎn)為圓心,半徑為4的圓經(jīng)過(guò)A,O兩點(diǎn)(O為坐標(biāo)原點(diǎn)),則雙曲線C的方程為( )
A.-=1 B.-=1
C.-=1 D.-=1
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知△ABC中,A(1,-4),B(6,6),C(-2,0).求:
(1)△ABC的平行于BC邊的中位線的一般式方程和截距式方程;
(2)BC邊的中線的一般式方程,并化為截距式方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
動(dòng)圓C經(jīng)過(guò)點(diǎn)F(1,0),并且與直線x=-1相切,若動(dòng)圓C與直線y=x+2+1總有公共點(diǎn),則圓C的面積( )
A.有最大值8π B.有最小值2π
C.有最小值3π D.有最小值4π
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知橢圓C:+=1(a>b>0)的左焦點(diǎn)為F,C與過(guò)原點(diǎn)的直線相交于A,B兩點(diǎn),連接AF,BF.若|AB|=10,|AF|=6,cos∠ABF=,則C的離心率e=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知橢圓+=1(a>b>0)經(jīng)過(guò)點(diǎn)(0,),離心率為,左右焦點(diǎn)分別為F1(-c,0),
F2(c,0).
(1)求橢圓的方程;
(2)若直線l:y=-x+m與橢圓交于A,B兩點(diǎn),與以F1F2為直徑的圓交于C,D兩點(diǎn),且滿足=,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
直線l:y=(x-2)和雙曲線C:-=1(a>0,b>0)交于A,B兩點(diǎn),且|AB|=,又l關(guān)于直線l1:y=x對(duì)稱的直線l2與x軸平行.
(1)求雙曲線C的離心率;
(2)求雙曲線C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知點(diǎn)A(-2,3)在拋物線C:y2=2px的準(zhǔn)線上,記C的焦點(diǎn)為F,則直線AF的斜率為( )
A.- B.-1
C.- D.-
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知F1,F2分別為橢圓C:+=1的左、右焦點(diǎn),點(diǎn)P為橢圓C上的動(dòng)點(diǎn),則△PF1F2的重心G的軌跡方程為( )
A.+=1(y≠0) B.+y2=1(y≠0)
C.+3y2=1(y≠0) D.x2+=1(y≠0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
執(zhí)行如圖所示的程序框圖,如果輸入a=2,b=2,那么輸出的a值為( )
A.4 B.16
C.256 D.log316
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com