考點:函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:函數(shù)f(x)=
=
=1+
.由a>b,可得a-b>0.當x>-b時,函數(shù)f(x)單調(diào)遞減;當x<-b時,函數(shù)f(x)單調(diào)遞減.利用函數(shù)的單調(diào)性的定義即可證明.
解答:
解:函數(shù)f(x)=
=
=1+
.
∵a>b,∴a-b>0.
當x>-b時,函數(shù)f(x)單調(diào)遞減;當x<-b時,函數(shù)f(x)單調(diào)遞減.
只證明:當x>-b時,函數(shù)f(x)單調(diào)遞減;
證明:?-b<x
1<x
2.則a-b>0,x
2-x
1>0,(x
1+b)(x
2+b)>0.
∴f(x
1)-f(x
2)=
1+-
(1+)=
>0.
∴f(x
1)>f(x
2).
∴當x>-b時,函數(shù)f(x)單調(diào)遞減.
同理可證,當x<-b時,函數(shù)f(x)單調(diào)遞減.
點評:本題考查了利用函數(shù)的單調(diào)性的定義證明函數(shù)的單調(diào)性,考查了變形的能力,考查了計算能力,屬于中檔題.