下列命題中:
①若p、q為兩個(gè)命題,則“p且q為真”是“p或q為真”的必要不充分條件;
②若p為:?x∈R,x2+2x+2≤0,則?p為:?x∈R,x2+2x+2>0;
③若橢圓
x2
16
+
y2
25
=1的兩焦點(diǎn)為F1、F2,且弦AB過(guò)F1點(diǎn),則△ABF2的周長(zhǎng)為16;
④雙曲線(xiàn)
x2
25
-
y2
9
=1與橢圓
x2
35
+y2=1有相同的焦點(diǎn);
所有正確命題的序號(hào)是
 
考點(diǎn):命題的真假判斷與應(yīng)用
專(zhuān)題:圓錐曲線(xiàn)的定義、性質(zhì)與方程,簡(jiǎn)易邏輯
分析:①若p、q為兩個(gè)命題,則“p且q為真”是“p或q為真”的充分不必要條件;
②利用¬p的定義即可得出;
③若橢圓
x2
16
+
y2
25
=1的兩焦點(diǎn)為F1、F2,且弦AB過(guò)F1點(diǎn),則△ABF2的周長(zhǎng)=4a,即可得出;
④利用雙曲線(xiàn)與橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)即可判斷出.
解答: 解:①若p、q為兩個(gè)命題,則“p且q為真”是“p或q為真”的充分不必要條件,因此不正確;
②若p為:?x∈R,x2+2x+2≤0,則?p為:?x∈R,x2+2x+2>0,正確;
③若橢圓
x2
16
+
y2
25
=1的兩焦點(diǎn)為F1、F2,且弦AB過(guò)F1點(diǎn),則△ABF2的周長(zhǎng)=4a=4×5=20,因此不正確;
④由雙曲線(xiàn)
x2
25
-
y2
9
=1可得c=
25+9
=
34
,其焦點(diǎn)為
34
,0)
;由橢圓
x2
35
+y2=1可得c=
35-1
=
34
,其焦點(diǎn)為
34
,0)
,因此有相同的焦點(diǎn),正確.
綜上可得:只有②④正確.
故答案為:②④.
點(diǎn)評(píng):本題考查了簡(jiǎn)易邏輯的有關(guān)知識(shí)、橢圓與雙曲線(xiàn)的標(biāo)準(zhǔn)方程及其性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(m-1)x2+(2m+1)x+1是偶函數(shù),則m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若
OB
=a1
OA
+a20
OC
,且A,B,C三點(diǎn)共線(xiàn)(該直線(xiàn)不過(guò)點(diǎn)O),則S20=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算∫
 
3
0
(x2-ex)dx=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若a=5,b=3,C=120°,則sinA=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,已知曲線(xiàn)C的參數(shù)方程是
x=2cosθ+2
y=2sinθ
(θ是參數(shù)),若以O(shè)為極點(diǎn),x軸的正半軸為極軸,則曲線(xiàn)C的極坐標(biāo)方程可寫(xiě)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,a2n=n-an,a2n+1=an+1,則a1+a2+a3+…+a100=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的每一項(xiàng)都是非負(fù)實(shí)數(shù),且對(duì)任意m,n∈N*都有am+n-am-an=0或am+n-am-an=1,又知a2=0,
a3>0,a99=33,則a3+a4+a5+a6=( 。
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列復(fù)數(shù)模大于3,且對(duì)應(yīng)的點(diǎn)位于第三象限的為( 。
A、z=-2-i
B、z=2-3i
C、z=3+2i
D、z=-3-2i

查看答案和解析>>

同步練習(xí)冊(cè)答案