已知f(x)是定義在R上的以3為周期的偶函數(shù),若f(1)<1,f(5)=
2a-3
a+1
,則實(shí)數(shù)a的取值范圍為(  )
A、-1<a<4
B、-2<a<1
C、-1<a<0
D、-1<a<2
考點(diǎn):函數(shù)奇偶性的性質(zhì),函數(shù)的周期性
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)的奇偶性和周期性將條件進(jìn)行轉(zhuǎn)化,利用不等式的解法即可得到結(jié)論.
解答: 解:∵f(x)是定義在R上的以3為周期的偶函數(shù),
∴f(5)=f(5-6)=f(-1)=f(1),
∴由f(1)<1,f(5)=
2a-3
a+1
,得f(5)=
2a-3
a+1
<1,
2a-3
a+1
-1=
2a-3-a-1
a+1
=
a-4
a+1
<0

解得:-1<a<4,
故選:A.
點(diǎn)評(píng):本題主要考查不等式的解法,利用函數(shù)的奇偶性和周期性進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為調(diào)查民營(yíng)企業(yè)的經(jīng)營(yíng)狀況,某統(tǒng)計(jì)機(jī)構(gòu)用分層抽樣的方法從A、B、C三個(gè)城市中,抽取若干個(gè)民營(yíng)企業(yè)組成樣本進(jìn)行深入研究,有關(guān)數(shù)據(jù)見(jiàn)表:(單位:個(gè))
城市 民營(yíng)企業(yè)數(shù)量 抽取數(shù)量
A x 4
B 28 y
C 84 6
(1)求x、y的值;
(2)若從城市A與B抽取的民營(yíng)企業(yè)中再隨機(jī)選2個(gè)進(jìn)行跟蹤式調(diào)研,求這2個(gè)都來(lái)自城市A的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角B所對(duì)的邊長(zhǎng)b=6,△ABC的面積為15,外接圓半徑R=5,則△ABC的周長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y∈R,則(x2+
1
y2
)(
1
x2
+4y2)的最小值為( 。
A、10B、8C、9D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在命題“若x2-7x+6=0,則x=1”的逆命題、否命題、逆否命題中,真命題的個(gè)數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題“?x∈R,x2-x-1≥0恒成立”的否定是(  )
A、?x∈R,x2-x-1<0恒成立
B、?x∈R,x2-x-1≤0恒成立
C、?x∈R,x2-x-1≥0成立
D、?x∈R,x2-x-1<0恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P和Q是兩個(gè)集合,定義集合P-Q={x|x∈P且x∉Q},如果P={x|log2x<1},Q={x|1<x<3},那么P-Q等于(  )
A、{x|0<x<1}
B、{x|0<x≤1}
C、{x|1≤x<2}
D、{x|2≤x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,sinA•sinB=
BC
2AC
,AC=
5
,AB=
2
,角B為銳角.
(Ⅰ)求角B和邊BC;
(Ⅱ)求sin(2C+B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a是實(shí)數(shù),函數(shù)f(x)=4x+|2x-a|(x∈R).
(1)求證:函數(shù)f(x)不是奇函數(shù);
(2)當(dāng)a≤0時(shí),解關(guān)于x的方程f(x)=a2;
(3)當(dāng)a>0時(shí),求函數(shù)y=f(x)的值域(用a表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案