已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x)=ex-1(e為自然對數(shù)的底數(shù),f(x)解析式無常數(shù)項)
(1)求f(x)的最小值;
(2)若對于任意的x∈[0,2],不等式f(x)≥ax恒成立,求實數(shù)a的取值范圍.
考點:函數(shù)最值的應(yīng)用,函數(shù)單調(diào)性的性質(zhì)
專題:綜合題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)求出原函數(shù),根據(jù)導(dǎo)數(shù)的正負,確定函數(shù)的單調(diào)性,即可求f(x)的最小值;
(2)不等式f(x)≥ax恒成立,等價于(a+1)x<ex,將(a+1)x<ex變形為a<
ex
x
-1,求出g(x)的最小值,即可求實數(shù)a的取值范圍.
解答: 解:(1)∵函數(shù)f(x)的導(dǎo)函數(shù)f′(x)=ex-1(e為自然對數(shù)的底數(shù),f(x)解析式無常數(shù)項),
∴f(x)=ex-x.
由f′(x)>0,可得x>0;f′(x)<0,可得x<0,
∴f(x)在(-∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增,
∴x=0時,f(x)的最小值為1;
(2)不等式f(x)≥ax恒成立,等價于(a+1)x<ex,
當x=0時,上述不等式顯然成立,故只需考慮x∈(0,2]的情況.
將(a+1)x<ex變形為a<
ex
x
-1.
令g(x)=
ex
x
-1,則g(x)的導(dǎo)函數(shù)g′(x)=
(x-1)ex
x2
,
令g′(x)>0,解得x>1;令g′(x)<0,解得x<1.
從而g(x)在(0,1)內(nèi)單調(diào)遞減,在(1,2)內(nèi)單調(diào)遞增.
∴當x=1時,g(x)取得最小值e-1,
從而實數(shù)a的取值范圍是(-∞,e-1].
點評:本題考查導(dǎo)數(shù)知識的運用,考查函數(shù)的最值,正確分離參數(shù)是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

現(xiàn)從黃瓜、白菜、油菜、土豆、蘿卜中選出4種分別種植在一排土質(zhì)不同的四塊土地上,黃瓜必須種植,白菜與油菜不能相鄰種植,則不同的種植方案的種數(shù)為( 。
A、24B、48C、72D、84

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

平面向量
a
b
的夾角為60°,
a
=(
3
,-1),|
b
|=1,則|
a
+2
b
|=( 。
A、
10
B、2
2
C、2
3
D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從A、B、C三個男生和D、E兩個女生中,每次隨機抽取1人,連續(xù)抽取2次.
(1)若采用不放回抽取,求取出的2人不全是男生的概率;
(2)若采用有放回抽取,求:
①2次抽到同一人的概率;
②抽取的2人不全是男生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinα、cosα是方程4x2+2
6
x+m=0的兩實根,求:
(1)m的值;
(2)cos3
π
2
-α)+cos3α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)的定義域為(0,+∞),滿足f(a•b)=f(a)+f(b),且對任意x>1,都有f(x)>0.
(1)求證:f(
1
x
)=-f(x);
(2)求證:f(
a
b
)=f(a)-f(b);
(3)求證:函數(shù)y=f(x)在(0,+∞)上為增函數(shù);
(4)若f(4)=1,解不等式f(2x+1)-f(1-x)>
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是一名籃球運動員在某一賽季10場比賽的得分的原始記錄的徑葉圖,
(1)計算該運動員這10場比賽的平均得分;
(2)估計該運動員在每場比賽中得分不少于40分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)z1是虛數(shù),z2=z1+
1
z1
是實數(shù),且-1≤z2≤1,求|z1|的值以及z1實部的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐S-ABCD的高為2,底面ABCD是邊長為2
2
的正方形,頂點S在底面上的射影是正方形ABCD的中心O.K是棱SC的中點.試求直線AK與平面SBC所成角的正弦值.(用空間向量解題)

查看答案和解析>>

同步練習冊答案