【題目】已知函數(shù)

1)設(shè),求函數(shù)的單調(diào)增區(qū)間;

2)設(shè),求證:存在唯一的,使得函數(shù)的圖象在點(diǎn)處的切線l與函數(shù)的圖象也相切;

3)求證:對(duì)任意給定的正數(shù)a,總存在正數(shù)x,使得不等式成立.

【答案】1的單調(diào)增區(qū)間為(0,];(2)證明見(jiàn)解析;(3)證明見(jiàn)解析.

【解析】

1)求出導(dǎo)函數(shù),在函數(shù)定義域內(nèi)由確定其增區(qū)間;

2)先求出處的切線方程,設(shè)這條切線與的圖象切于點(diǎn),由,得出關(guān)于的方程,然后證明此方程的解在上存在且唯一.

3)把問(wèn)題轉(zhuǎn)化為上有解,令,則只要即可.

1hx)=gx)﹣x2lnxx2,x∈(0,+∞).

解得

∴函數(shù)hx)的單調(diào)增區(qū)間為(0,]

2)證明:設(shè)x01,可得切線斜率

切線方程為:

假設(shè)此切線與曲線yfx)=ex相切于點(diǎn)Bx1,),fx)=ex

k=,

化為:x0lnx0lnx0x010,x01

下面證明此方程在(1+∞)上存在唯一解.

ux0)=x0lnx0lnx0x01,x01

,在x0∈(1,+∞)上單調(diào)遞增.

u1)=-1,,

上有唯一實(shí)數(shù)解,

,,遞減,

時(shí),遞增,

,∴上無(wú)解,

,∴上有唯一解.

∴方程在(1,+∞)上存在唯一解.

即:存在唯一的x0,使得函數(shù)ygx)的圖象在點(diǎn)Ax0,gx0))處的切線l與函數(shù)yfx)的圖象也相切.

3)證明:

vx)=exx1,x0

vx)=ex10,

∴函數(shù)vx)在x∈(0,+∞)上單調(diào)遞增,

vx)>v0)=0

∴不等式,a0exx1ax0

Hx)=exx1ax0,

由對(duì)任意給定的正數(shù)a,總存在正數(shù)x,使得不等式成立Hxmin0

Hx)=exx1ax,ax∈(0,+∞).

Hx)=ex1a,令ex1a0

解得x0

函數(shù)Hx)在區(qū)間(0,)上單調(diào)遞減,在區(qū)間(,+∞)上單調(diào)遞增.

H0)=0,∴

∴存在對(duì)任意給定的正數(shù)a,總存在正數(shù)x,使得不等式成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線為參數(shù)),曲線為參數(shù)).

(1)設(shè)相交于兩點(diǎn),求;

(2)若把曲線上各點(diǎn)的橫坐標(biāo)壓縮為原來(lái)的倍,縱坐標(biāo)壓縮為原來(lái)的倍,得到曲線,設(shè)點(diǎn)是曲線上的一個(gè)動(dòng)點(diǎn),求它到直線的距離的最大時(shí),點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】每年的日是全國(guó)愛(ài)牙日,為了迎接這一節(jié)日,某地區(qū)衛(wèi)生部門(mén)成立了調(diào)查小組,調(diào)查“常吃零食與患齲齒的關(guān)系”,對(duì)該地區(qū)小學(xué)六年級(jí)名學(xué)生進(jìn)行檢查,按患齲齒的不患齲齒分類,得匯總數(shù)據(jù):不常吃零食且不患齲齒的學(xué)生有名,常吃零食但不患齲齒的學(xué)生有名,不常吃零食但患齲齒的學(xué)生有名.

1)完成答卷中的列聯(lián)表,問(wèn):能否在犯錯(cuò)率不超過(guò)的前提下,認(rèn)為該地區(qū)學(xué)生的常吃零食與患齲齒有關(guān)系?

2名區(qū)衛(wèi)生部門(mén)的工作人員隨機(jī)分成兩組,每組人,一組負(fù)責(zé)數(shù)據(jù)收集,另一組負(fù)責(zé)數(shù)據(jù)處理,求工作人員甲分到負(fù)責(zé)收集數(shù)據(jù)組,工作人員乙分到負(fù)責(zé)數(shù)據(jù)處理組的概率.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,已知圓圓心為,過(guò)點(diǎn)且斜率為的直線與圓相交于不同的兩點(diǎn)

)求的取值范圍;

)是否存在常數(shù),使得向量共線?如果存在,求值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線的參數(shù)方程為為參數(shù)),在同一平面直角坐標(biāo)系中,將曲線上的點(diǎn)按坐標(biāo)變換得到曲線,以原點(diǎn)為極點(diǎn)、軸的正半軸為極軸,建立極坐標(biāo)系.

1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

2)若直線與曲線交于兩點(diǎn),與曲線交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,底面.

1)求證:平面;

2)若直線與平面所成的角為,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),判斷上的單調(diào)性并加以證明;

2)若,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)的定義域?yàn)?/span>,如果存在非零常數(shù),對(duì)于任意,都有,則稱函數(shù)似周期函數(shù),非零常數(shù)為函數(shù)似周期.現(xiàn)有下面四個(gè)關(guān)于似周期函數(shù)的命題:

①如果似周期函數(shù)似周期,那么它是周期為2的周期函數(shù);

②函數(shù)似周期函數(shù);

③如果函數(shù)似周期函數(shù),那么

以上正確結(jié)論的個(gè)數(shù)是(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,側(cè)棱底面,,是棱中點(diǎn).

1)已知點(diǎn)在棱上,且平面平面,試確定點(diǎn)的位置并說(shuō)明理由;

2)設(shè)點(diǎn)是線段上的動(dòng)點(diǎn),當(dāng)點(diǎn)在何處時(shí),直線與平面所成角最大?并求最大角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案