【題目】已知函數(shù).

(1)當(dāng)時,求的值域;

(2)當(dāng)時,函數(shù)的圖象關(guān)于對稱,求函數(shù)的對稱軸.

(3)若圖象上有一個最低點,如果圖象上每點縱坐標(biāo)不變,橫坐標(biāo)縮短到原來的倍,然后向左平移1個單位可得的圖象,又知的所有正根從小到大依次為,且,求的解析式.

【答案】(1);(2);(3).

【解析】

分析:(1),值域為時,利用三角函數(shù)的有界性可得結(jié)果;(2)時,函數(shù)的圖象關(guān)于對稱,利用輔助角公式可得關(guān)于的方程從而可求出的值,進(jìn)而確定函數(shù)的解析式,由兩角和的正弦公式將其化為一個角的三角函數(shù),利用正弦函數(shù)的對稱性求解即可;(3)根據(jù)圖象上有一個最低點,結(jié)合輔助角公式可求得,從而得,,分類討論排除不合題意的,從而可得結(jié)果.

詳解(1)當(dāng)b=0時,函數(shù)g(x)=asinx+c.

當(dāng)a=0時,值域為:{c}.

當(dāng)a0時,值域為:[c﹣|a|,c+|a|].(

(2)當(dāng)a=1,c=0時,

∵g(x)=sinx+bcosx 且圖象關(guān)于x=對稱,

∴||=,∴b=﹣

函數(shù) y=bsinx+acosx 即:y=﹣sinx+cosx= cos(x+).

由 x+=kπ,k∈z,可得函數(shù)的對稱軸為:x=kπ﹣,k∈z.

(3)由g(x)=asinx+bcosx+c= sin(x+)+c,其中,sin=,cos=

由g(x)圖象上有一個最低點 (,1),所以,

,

∴g(x)=(c﹣1)sin(x﹣)+c.

又圖象上每點縱坐標(biāo)不變,橫坐標(biāo)縮短到原來的倍,然后向左平移1個單位可得y=f(x)的圖象,則f(x)=(c﹣1)sinx+c.

f(x)=3的所有正根從小到大依次為 x1、x2、x3…xn、…,且 xn﹣xn1=3 (n≥2 ),

所以y=f(x)與直線y=3的相鄰交點間的距離相等,根據(jù)三角函數(shù)的圖象與性質(zhì),直線y=3要么過f(x)的最高點或最低點,要么是y=,

即:2c﹣1=3或 1﹣c+c=3(矛盾)或 =3,解得c=2 或 c=3.

當(dāng)c=2時,函數(shù)的 f(x)=sin+2,T=6.

直線 y=3和 f(x)=sin+2相交,且 xn﹣xn1=3 (n≥2 ),周期為3(矛盾).

當(dāng)c=3時,函數(shù) f(x)=2sin+3,T=6.

直線直線 y=3和 f(x)=2sin+3相交,且 xn﹣xn1=3 (n≥2 ),周期為6(滿足條件).

綜上:f(x)=2sin+2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點是橢圓的短軸位于軸下方的端點,過作斜率為1的直線交橢圓于點,點軸上,且軸,

1)若點的坐標(biāo)為,求橢圓的方程;

2)若點的坐標(biāo)為,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一動圓與圓外切,與圓內(nèi)切.

(1)求動圓圓心的軌跡的方程.

(2)設(shè)過圓心的直線與軌跡相交于兩點,為圓的圓心)的內(nèi)切圓的面積是否存在最大值?若存在,求出這個最大值及直線的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是方程的兩根, 數(shù)列是公差為正的等差數(shù)列,數(shù)列的前項和為,且.

(1)求數(shù)列的通項公式

(2)記,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)對任意 ,都有xln(kx)﹣kx+1≤mx,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于n∈N* , 若數(shù)列{xn}滿足xn+1﹣xn>1,則稱這個數(shù)列為“K數(shù)列”.
(Ⅰ)已知數(shù)列:1,m+1,m2是“K數(shù)列”,求實數(shù)m的取值范圍;
(Ⅱ)是否存在首項為﹣1的等差數(shù)列{an}為“K數(shù)列”,且其前n項和Sn滿足 ?若存在,求出{an}的通項公式;若不存在,請說明理由;
(Ⅲ)已知各項均為正整數(shù)的等比數(shù)列{an}是“K數(shù)列”,數(shù)列 不是“K數(shù)列”,若 ,試判斷數(shù)列{bn}是否為“K數(shù)列”,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足,,設(shè)

1)求;

2)判斷數(shù)列是否為等比數(shù)列,并說明理由;

3)求的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在平面四邊形ABCD中,AB= ,BC=2,AC⊥CD,AC=CD,則四邊形ABCD面積的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,點,直線l(其中).

Ⅰ)求直線l所經(jīng)過的定點P的坐標(biāo);

Ⅱ)若分別過A,B且斜率為的兩條平行直線截直線l所得線段的長為,求直線的方程.

查看答案和解析>>

同步練習(xí)冊答案