【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點.
(1)求PB和平面PAD所成的角的大小;
(2)證明AE⊥平面PCD.
【答案】解:(1)在四棱錐P﹣ABCD中,
因PA⊥底面ABCD,AB平面ABCD,
故PA⊥AB.
又AB⊥AD,PA∩AD=A,
從而AB⊥平面PAD,
故PB在平面PAD內的射影為PA,從而∠APB為PB和平面PAD所成的角.
在Rt△PAB中,AB=PA,故∠APB=45°.
所以PB和平面PAD所成的角的大小為45°.
(2)證明:在四棱錐P﹣ABCD中,
因為PA⊥底面ABCD,CD平面ABCD,
所以CD⊥PA.
因為CD⊥AC,PA∩AC=A,
所以CD⊥平面PAC.
又AE平面PAC,所以AE⊥CD.
由PA=AB=BC,∠ABC=60°,可得AC=PA.
因為E是PC的中點,所以AE⊥PC.
又PC∩CD=C,
所以AE⊥平面PCD.
【解析】(1)先找出PB和平面PAD所成的角,再進行求解即可;
(2)可以利用線面垂直根據二面角的定義作角,再證明線面垂直.
【考點精析】通過靈活運用空間角的異面直線所成的角,掌握已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則即可以解答此題.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中, 底面,底面是直角梯形, , , , 是的中點.
(1)求證:平面平面;
(2)若二面角的余弦值為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,邊長為2的正方形ABCD中,
(1)點E是AB的中點,點F是BC的中點,將△AED,△DCF分別沿DE,DF折起,使A,C兩點重合于點A′.求證:A′D⊥EF.
(2)當BE=BF=BC時,求三棱錐A′﹣EFD體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知曲線的參數方程為(為參數).在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,曲線: .
(Ⅰ)求曲線的普通方程和的直角坐標方程;
(Ⅱ)若與相交于兩點,設點,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)的定義域為R,且f(x)不為常值函數,有以下命題:
①函數g(x)=f(x)+f(﹣x)一定是偶函數;
②若對任意x∈R都有f(x)+f(2﹣x)=0,則f(x)是以2為周期的周期函數;
③若f(x)是奇函數,且對于任意x∈R,都有f(x)+f(2+x)=0,則f(x)的圖象的對稱軸方程為x=2n+1(n∈Z);
④對于任意的x1 , x2∈R,且x1≠x2 , 若>0恒成立,則f(x)為R上的增函數,
其中所有正確命題的序號是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列四組中,f(x)與g(x)表示同一函數的是( )
A.f(x)=x,
B.f(x)=x,
C.f(x)=x2 ,
D.f(x)=|x|,g(x)=
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com