(本小題滿分14分)已知定義在上的函數(shù),其中為常數(shù)。

(Ⅰ)若當(dāng)時,函數(shù)取得極值,求的值;

(Ⅱ)若函數(shù)在區(qū)間(-1,0)上是增函數(shù),求的取值范圍;

(Ⅲ)若函數(shù),在處取得最大值,求正數(shù)的取值范圍。

 

 

【答案】

解:(I)

    時,函數(shù)取得極值,

      經(jīng)檢驗(yàn)  符合題意      …………………………………………………3分

   (II)①當(dāng)=0時,在區(qū)間(-1,0)上是增函數(shù),符合題意;

    ②當(dāng)

    當(dāng)>0時,對任意符合題意;

    當(dāng)<0時,當(dāng)符合題意;

    綜上所述,                 ………………………………………………8分

   ( 解法2:在區(qū)間(-1,0)恒成立,

在區(qū)間(-1,0)恒成立,又,

   (III)

           ………………10分

    令

    設(shè)方程(*)的兩個根為式得,不妨設(shè).

    當(dāng)時,為極小值,所以在[0,2]上的最大值只能為;

    當(dāng)時,由于在[0,2]上是單調(diào)遞減函數(shù),所以最大值為,

所以在[0,2]上的最大值只能為,

    又已知x=0處取得最大值,所以       ……………………12分

    即 。    ………………14分

 

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達(dá)式,并求f(x)的最小正周期;
(II)當(dāng)x∈[0,
π
2
]  時,求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個焦點(diǎn),當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進(jìn)行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.

⑴ 求滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習(xí)冊答案