過直線l外的一點P引兩條直線PA,PB和直線l分別相交于A,B兩點,求證:三條直線PA,PB,l共面.
考點:平面的基本性質(zhì)及推論
專題:空間位置關系與距離
分析:設過P的直線PA、PB相交所成的面為α,由公式二推導出AB?α,由此能證明三條直線PA,PB,l,共面.
解答: 證明:設過P的直線PA、PB相交所成的面為α
∵PA?α,A∈PA,∴A∈α,
PB?α,B∈PB,∴B∈α,
∵A∈AB,且B∈AB,
∴AB?α,
∴三條直線PA,PB,l,共面,都在平面α上.
點評:本題考查三條直線共面的證明,是基礎題,解題時要注意公理二的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知集合A={x|ax>1(a≠0)},B={x|x2-1>0},若A⊆B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=-
1
3
x3+x2+3x+a.
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)在區(qū)間[-3,3]上的最小值為
7
3
,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾。疄榱私饽呈行姆渭膊∈欠衽c性別有關,在某醫(yī)院隨機的對入院50人進行了問卷調(diào)查得到了如下的列聯(lián)表:
患心肺疾病不患心肺疾病合計
5
10
合計50
已知在全部50人中隨機抽取1人,抽到患心肺疾病的人的概率為
3
5

(Ⅰ)請將上面的列聯(lián)表補充完整;
(Ⅱ)是否有99.5%的把握認為患心肺疾病與性別有關?說明你的理由;
(Ⅲ)已知在患心肺疾病的10位女性中,有3位又患胃。F(xiàn)在從患心肺疾病的10位女性中,選出3名進行其他方面的排查,記選出患胃病的女性人數(shù)為ξ,求ξ的分布列,數(shù)學期望以及方差;大氣污染會引起各種疾病,試淺談日常生活中如何減少大氣污染.
下面的臨界值表供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設M是把坐標平面上的點的橫坐標伸長到2倍,縱坐標伸長到3倍的伸壓變換.
(1)求矩陣M逆矩陣;
(2)求矩陣M的特征值及相應的特征向量.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知動點P的軌跡是曲線C,滿足點P到點F(-4,0)的距離與它到直線l:x=-1的距離|PQ|之比為常數(shù),又點(2,0)在曲線C上.
(1)求曲線C的方程;
(2)是否存在直線y=kx-2與曲線C交于不同的兩點M和N,且線段MN的中點為A(1,1).若存在求出求實數(shù)k的值,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知AB是橢圓
x2
a2
+
y2
b2
=1的不平行于對稱軸的弦,M(x0,y0)為AB的中點,求直線AB的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1的離心率為2,一個焦點坐標為F2
2
3
3
,0),直線l:y=ax+1與雙曲線交于A、B兩點.
(1)求雙曲線的標準方程;
(2)若以AB為直徑的圓過坐標原點,求實數(shù)a的值;
(3)是否存在這樣的實數(shù)a,使A、B兩點關于直線y=
1
2
x對稱?若存在,請求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=-x3+ax在(-∞,-1]上遞減,且g(x)=2x+
a
x
在(1,2]上既有最大值,又有最小值,則a的取值范圍是
 

查看答案和解析>>

同步練習冊答案