已知函數(shù)f(x)=
px2+2
-3x
,且f(2)=-
5
3

(1)求函數(shù)f(x)的解析式;
(2)判斷f(x)的奇偶性;
(3)判斷函數(shù)f(x)在區(qū)間(0,1)上的單調(diào)性,并加以證明.
分析:(1)把x=2代入函數(shù)的解析式,列出關(guān)于p的方程,求解即可;
(2)由(1)求出的解析式,根據(jù)分母不為零求出函數(shù)的定義域,然后驗證f(x)與f(-x)的關(guān)系,判斷出函數(shù)的奇偶性;
(3)先把解析式化簡后判斷出單調(diào)性,再利用定義法證明:在區(qū)間上取值-作差-變形-判斷符號-下結(jié)論,因解析式由分式,故變形時必須用通分.
解答:解:(1)由題意知f(2)=-
5
3
,f(x)=
px2+2
-3x

f(2)=
4p+2
-6
=-
5
3
,解得p=2
則所求解析式為f(x)=
2x2+2
-3x

(2)由(1)得,f(x)=
2x2+2
-3x
,則此函數(shù)的定義域是{x|x≠0},
∵f(-x)=
2x2+2
3x
=-f(x),
∴函數(shù)f(x)是奇函數(shù).
(3)由(1)可得f(x)=
2x2+2
-3x
=-
2
3
(x+
1
x
)
,則函數(shù)f(x)在區(qū)間(0,1)上是增函數(shù),
證明如下:設(shè)0<x1<x2<1,
f(x1)-f(x2)=
2
3
[(x2+
1
x2
)-(x1+
1
x1
)]=
2
3
[(x2-x1)+(
1
x2
-
1
x1
)]

=
2
3
[(x2-x1)+
x1-x2
x1x2
]=
2
3
(x1-x2)(
1
x1x2
-1)=
2
3
(x1-x2
1-x1x2
x1x2

∵0<x1<x2<1,0<x1x2<1,1-x1x2>0,x1-x2<0,
∴f(x1)-f(x2)<0,即f(x1)<f(x2
∴函數(shù)f(x)在區(qū)間(0,1)上是增函數(shù).
點評:本題考查了有關(guān)函數(shù)的性質(zhì)綜合題,用待定系數(shù)法求解析式,用定義法證明函數(shù)的奇偶性和單調(diào)性,必須遵循證明的步驟,考查了分析問題和解決問題能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-alnx
的圖象在點P(2,f(2))處的切線方程為l:y=x+b
(1)求出函數(shù)y=f(x)的表達(dá)式和切線l的方程;
(2)當(dāng)x∈[
1
e
,e]
時(其中e=2.71828…),不等式f(x)<k恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-x3+x2+bx+c
 ,(x<1)
alnx
 ,(x≥1)
的圖象過坐標(biāo)原點O,且在點(-1,f(-1))處的切線的斜率是-5.
(1)試確定實數(shù)b,c的值,并求f(x)在區(qū)間[-1,2]上的最大值;
(2)對任意給定的正實數(shù)a,曲線y=f(x)上是否存在兩點P、Q,使得△POQ是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在y軸上?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
1
2
ax2+bx(a≠0),h(x)=
2(x-1)
x+1

(1)當(dāng)a=-2時,函數(shù)F(x)=f(x)-g(x)在其定義域范圍是增函數(shù),求實數(shù)b的取值范圍;
(2)當(dāng)x>1時,證明f(x)>h(x)成立;
(3)記函數(shù)f(x)與g(x)的圖象分別是C1、C2,C1、C2相交于不同的兩點P,Q,過線段PQ的中點R作垂直于x軸的垂線,與C1、C2分別交于M、N,問是否存在點R,使得曲線C1在M處的切線與曲線C2在N處的切線平行?若存在,試求出R點的坐標(biāo);若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
tx
(x>0)
,過點P(1,0)作曲線y=f(x)的兩條切線PM,PN,切點分別為M,N.
(1)當(dāng)t=2時,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)設(shè)|MN|=g(t),試求函數(shù)g(t)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)
是f(x)圖象上的兩點,橫坐標(biāo)為
1
2
的點P滿足2
OP
=
OM
+
ON
(O為坐標(biāo)原點).
(1)求證:y1+y2為定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,n≥2令an=
1
6
,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn為數(shù)列{an}的前n項和,若Tn<m(Sn+1+1)對一切n∈N*都成立,試求m的取值范圍.
(3)對于給定的實數(shù)a(a>1)是否存在這樣的數(shù)列{an},使得f(an)=log3(
3
an+1)
,且a1=
1
a-1
?若存在,求出a滿足的條件;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案