已知ABCD-A1B1C1D1為棱長(zhǎng)為1的正方體,點(diǎn)P1,P2分別是線段AB,BD1上的動(dòng)點(diǎn)且不包括端點(diǎn),在P1,P2運(yùn)動(dòng)的過程中線段P1,P2始終平行平面A1ADD1,則幾何體P1P2AB1的體積為最大值時(shí),AP1=( 。
A、
1
2
B、
1
3
C、1
D、2
考點(diǎn):組合幾何體的面積、體積問題
專題:計(jì)算題,空間位置關(guān)系與距離
分析:由題意可得△P1P2B∽△AD1B,設(shè)出P1B=x,則P1P2=
2
x,P2到平面AA1B1B的距離為x,求出四面體的體積,通過二次函數(shù)的最值,求出四面體的體積的最大值.
解答: 解:由題意在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,點(diǎn)P1,P2分別是線段AB,BD1(不包括端點(diǎn))上的動(dòng)點(diǎn),且線段P1P2平行于平面A1ADD1,△P1P2B∽△AD1B,
設(shè)P1B=x,x∈(0,1),
則P1P2=
2
x,P2到平面AA1B1B的距離為x,
所以四面體P1P2AB1的體積為V=
1
3
×
1
2
×1×x×(1-x)=
1
6
(x-x2),
當(dāng)x=
1
2
時(shí),體積取得最大值:
1
24

∴AP1=
1
2

故選:A.
點(diǎn)評(píng):本題考查正方體中,幾何體的體積的求法,找出所求四面體的底面面積和高是解題的關(guān)鍵,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

頂點(diǎn)在原點(diǎn),且過點(diǎn)(-4,4)的拋物線的標(biāo)準(zhǔn)方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)直徑為32厘米的圓柱形水桶中放入一個(gè)鐵球,球全部沒入水中后,水面升高9厘米,則此球的半徑為( 。├迕祝
A、9B、10C、11D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,一個(gè)空間幾何體的正視圖和側(cè)視圖都是邊長(zhǎng)為2的等邊三角形,俯視圖是一個(gè)圓,那么這個(gè)幾何體的體積為( 。
A、
3
4
π
B、
3
3
π
C、
3
2
π
D、
3
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:
(1)若f(x)是增函數(shù),則
1
f(x)
是減函數(shù);
(2)若f(x)是減函數(shù),則[f(x)]2是減函數(shù);
(3)若f(x)是增函數(shù),g(x)是減函數(shù),g[f(x)]有意義,則g[f(x)]為減函數(shù),
其中正確的個(gè)數(shù)有(  )
A、1B、2C、3D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0),F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點(diǎn),橢圓上總存在點(diǎn)P使得PF1⊥PF2,則橢圓的離心率的取值范圍為( 。
A、[
2
2
,1)
B、(
2
2
,1)
C、(0,
2
2
D、(0,
2
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個(gè)正三棱錐的三條側(cè)棱兩兩垂直且相等,底面邊長(zhǎng)為2,則該三棱錐的外接球的表面積是( 。
A、6πB、12π
C、18πD、24π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
sin(α+2β)
sinα
=3,且β≠
1
2
kπ,α+β≠nπ+
π
2
(n,k∈Z),則
tan(α+β)
tanβ
的值為( 。
A、2
B、1
C、
1
2
D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x不等式x2-2ax+a+2≤0(a∈R)的解集為M.
(1)當(dāng)M為空集時(shí),求實(shí)數(shù)a的取值范圍;
(2)如果M⊆[1,4],求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案