【題目】若圖所示,將若干個點擺成三角形圖案,每條邊(包括兩個端點)n(n>1,n∈N*)個點,相應的圖案中總的點數(shù)記為an , 則 + + +…+ =

【答案】
【解析】解:根據(jù)分析,可得
a2=3=3×(2﹣1),a3=6=3×(3﹣1),a4=9=3×(4﹣1),a5=12=3×(5﹣1)…an=3(n﹣1),
數(shù)列{an}是首項為3,公差為3的等差數(shù)列,通項為an=3(n﹣1)(n≥2);
所以 = = ),
+ + +…+ =1﹣ + +…+ =
所以答案是:
【考點精析】利用歸納推理對題目進行判斷即可得到答案,需要熟知根據(jù)一類事物的部分對象具有某種性質,退出這類事物的所有對象都具有這種性質的推理,叫做歸納推理.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】屆亞運會于日至日在中國廣州進行,為了做好接待工作,組委會招募了名男志愿者和名女志愿者,調查發(fā)現(xiàn),男、女志愿者中分別有人和人喜愛運動,其余不喜愛.

根據(jù)以上數(shù)據(jù)完成以下列聯(lián)表:


喜愛運動

不喜愛運動

總計


10


16


6


14

總計



30

(2)能否在犯錯誤的概率不超過的前提下認為性別與喜愛運動有關?

(3)如果從喜歡運動的女志愿者中(其中恰有人會外語),抽取名負責翻譯工作,則抽出的志愿者中人都能勝任翻譯工作的概率是多少?

:K2=

P(K2≥k)

0.100

0.050

0.025

0.010

0.001

k

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某旅游為了解2015年國慶節(jié)期間參加某境外旅游線路的游客的人均購物消費情況,隨機對50人做了問卷調查,得如下頻數(shù)分布表:

人均購物消費情況

[0,2000]

(2000,4000]

(4000,6000]

(6000,8000]

(8000,10000]

額數(shù)

15

20

9

3

3

附:臨界值表參考公式:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:K2= ,其中n=a+b+c+d.

(1)做出這些數(shù)據(jù)的頻率分布直方圖并估計次境外旅游線路游客的人均購物的消費平均值;
(2)在調查問卷中有一項是“您會資助失學兒童的金額?”,調查情況如表,請補全如表,并說明是否有95%以上的把握認為資助數(shù)額多于或少于500元和自身購物是否到4000元有關?

人均購物消費不超過4000元

人均購物消費超過4000元

合計

資助超過500元

30

資助不超過500元

6

合計

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設復數(shù)z滿足zi=2﹣i,i為虛數(shù)單位,
p1:|z|= ,
p2:復數(shù)z在復平面內對應的點在第四象限;
p3:z的共軛復數(shù)為﹣1+2i,
p4:z的虛部為2i.
其中的真命題為(
A.p1 , p3
B.p2 , p3
C.p1 , p2
D.p1 , p4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,點也為拋物線的焦點.(1)若為橢圓上兩點,且線段的中點為,求直線的斜率;

(2)若過橢圓的右焦點作兩條互相垂直的直線分別交橢圓于,設線段的長分別為,證明是定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一臺機器在一天內發(fā)生故障的概率為p.已知這臺機器在3個工作日至少一天不發(fā)生故障的概率為0.999.

(1)求p;

(2)若這臺機器一周5個工作日不發(fā)生故障,可獲利5萬元;發(fā)生一次故障任可獲利2.5萬元;發(fā)生2次故障的利潤為0元;發(fā)生3次或3次以上故障要虧損1萬元.這臺機器一周內可能獲利的均值是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC是邊長為2的等邊三角形,2AE=BD=2.
(Ⅰ)若F是線段CD的中點,證明:EF⊥面DBC;
(Ⅱ)求二面角D﹣EC﹣B的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知曲線的極坐標方程為,直線,直線.以極點為原點,極軸為軸正半軸建立平面直角坐標系.

(1)求直線的直角坐標方程以及曲線的參數(shù)方程;

(2)已知直線與曲線交于兩點,直線與曲線交于兩點,求的周長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正四棱柱中,已知AB=2, ,

E、F分別為、上的點,且.

(1)求證:BE⊥平面ACF;

(2)求點E到平面ACF的距離.

查看答案和解析>>

同步練習冊答案