【題目】一臺(tái)機(jī)器在一天內(nèi)發(fā)生故障的概率為p.已知這臺(tái)機(jī)器在3個(gè)工作日至少一天不發(fā)生故障的概率為0.999.

(1)求p;

(2)若這臺(tái)機(jī)器一周5個(gè)工作日不發(fā)生故障,可獲利5萬元;發(fā)生一次故障任可獲利2.5萬元;發(fā)生2次故障的利潤為0元;發(fā)生3次或3次以上故障要虧損1萬元.這臺(tái)機(jī)器一周內(nèi)可能獲利的均值是多少?

【答案】(1) p=0.1 (2)見解析

【解析】

(1)先求對(duì)立事件“3個(gè)工作日都發(fā)生故障”的概率,再用1減得結(jié)果,(2)先求發(fā)生故障的次數(shù)分布列,再根據(jù)期望公式求利潤的均值,即得結(jié)果.

(1)設(shè)事件A表示“3個(gè)工作日至少一天不發(fā)生故障”,則表示“3個(gè)工作日都發(fā)生故障”,所以P(A)=1-P()=1-p3=0.999,得p=0.1

(2)設(shè)X為一周5個(gè)工作日發(fā)生故障的次數(shù),則X~B(5,0.1),所以X的分布為

P(X=k)=×0.1k×0.95k(k=0,1,2,3,4,5),即

X

0

1

2

X≥3

p

0.59049

0.32805

0.0729

0.00856

用Y表示所得利潤,則Y的分布為

Y

5

2.5

0

-1

p

0.59049

0.32805

0.0729

0.00805

所以E(Y)=5×0.59049+2.5×0.32805+(-1)×0.00805≈3.76(萬元)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確的是(
A.若ξ服從正態(tài)分布N(0,2),且P(ξ>2)=0.4,則P(0<ξ<2)=0.2
B.x=1是x2﹣x=0的必要不充分條件
C.直線ax+y+2=0與ax﹣y+4=0垂直的充要條件為a=±1
D.“若xy=0,則x=0或y=0”的逆否命題為“若x≠0或y≠0,則xy≠0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分) 命題實(shí)數(shù)x滿足(其中),命題實(shí)數(shù)滿足

)若,且為真,求實(shí)數(shù)的取值范圍;

)若 的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐P-ABCD的底面是直角梯形,ADBC,ADC=90,AD=2BC,PA⊥平面ABCD

(1)設(shè)E為線段PA的中點(diǎn),求證:BE∥平面PCD

(2)PA=AD=DC,求平面PAB與平面PCD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若圖所示,將若干個(gè)點(diǎn)擺成三角形圖案,每條邊(包括兩個(gè)端點(diǎn))n(n>1,n∈N*)個(gè)點(diǎn),相應(yīng)的圖案中總的點(diǎn)數(shù)記為an , 則 + + +…+ =

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】假設(shè)關(guān)于某種設(shè)備的使用年限 ()與所支出的維修費(fèi)用 (萬元)有如下統(tǒng)計(jì)資料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0

已知.

,

(1), ;

(2) 具有線性相關(guān)關(guān)系,求出線性回歸方程;

(3)估計(jì)使用年限為10年時(shí),維修費(fèi)用約是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)復(fù)數(shù)z滿足zi=2﹣i,i為虛數(shù)單位,
p1:|z|=
p2:復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第四象限;
p3:z的共軛復(fù)數(shù)為﹣1+2i,
p4:z的虛部為2i.
其中的真命題為(
A.p1 , p3
B.p2 , p3
C.p1 , p2
D.p1 , p4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 由經(jīng)驗(yàn)得知,在某商場付款處排隊(duì)等候付款的人數(shù)及概率如下表

排隊(duì)人數(shù)

0

1

2

3

4

5人以上

概率

0.1

0.16

0.3

0.3

0.1

0.04

(1)至多有2人排隊(duì)的概率是多少?

(2)至少有2人排隊(duì)的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在下列4個(gè)函數(shù):① ;②y=sinx;③y=﹣tanx;④y=﹣cos2x、其中在區(qū)間 上增函數(shù)且以π為周期的函數(shù)是(把所有符合條件的函數(shù)序列號(hào)都填上)

查看答案和解析>>

同步練習(xí)冊答案