4.已知條件p:x<1,條件q:x2-x<0,則p是q成立的( 。l件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

分析 條件q:x2-x<0,解得0<x<1,可得q⇒p,反之不成立.即可判斷出結(jié)論.

解答 解:條件q:x2-x<0,解得0<x<1,
又條件p:x<1,∴q⇒p,反之不成立.
則p是q成立的必要不充分條件.
故選:B.

點(diǎn)評(píng) 本題考查了不等式的解法、充要條件的判定,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=log2(2x)•log2(4x),g(t)=$\frac{f(x)}{t}$-3,其中t=log2x(4≤x≤8).
(1)求f($\sqrt{2}$)的值;
(2)求函數(shù)g(t)的解析式,判斷g(t)的單調(diào)性并用單調(diào)性定義給予證明;
(3)若a≤g(t)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)0<x<1,a,b都為大于零的常數(shù),則$\frac{{a}^{2}}{x}$+$\frac{^{2}}{1-x}$的最小值為(  )
A.(a-b)2B.(a+b)2C.a2b2D.a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.log36-log32=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若α為第一象限角,且cosα=$\frac{2}{3}$,則tanα=$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.某單位有職工100人,不到35歲的有45人,35歲到49歲的25人,剩下的為50歲以上的人,現(xiàn)在抽取20人,按年齡段進(jìn)行分層抽樣,50歲以上應(yīng)抽取的人數(shù)為6人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.定義平面向量的一種運(yùn)算:$\overrightarrow{a}$?$\overrightarrow$=|$\overrightarrow{a}$||$\overrightarrow$|sin$<\overrightarrow{a},\overrightarrow$>,給出下列命題:
①$\overrightarrow{a}$?$\overrightarrow$=$\overrightarrow$?$\overrightarrow{a}$;
②λ($\overrightarrow{a}$?$\overrightarrow$)=($λ\overrightarrow{a}$)?$\overrightarrow$;
③($\overrightarrow{a}+\overrightarrow$)?$\overrightarrow{c}$=($\overrightarrow{a}$?$\overrightarrow{c}$)+($\overrightarrow$?$\overrightarrow{c}$);
④若$\overrightarrow{a}$=(x1,y1),$\overrightarrow$=(x2,y2);則$\overrightarrow{a}$?$\overrightarrow$=|x1y2-x2y1|.
其中所有不正確命題的序號(hào)是①④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知扇形的周長為30厘米,它的面積的最大值為$\frac{225}{4}$;此時(shí)它的圓心角α=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足:a1=1,a2=2,Sn+1=an+2-an+1(n∈N*),若不等式λSn>an恒成立,則實(shí)數(shù)λ的取值范圍是λ>1.

查看答案和解析>>

同步練習(xí)冊(cè)答案