【題目】已知函數(shù),函數(shù)與有相同極值點(diǎn).
(1)求函數(shù)的最大值;
(2)求實(shí)數(shù)的值;
(3)若,不等式恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1);(2);(3).
【解析】
試題分析:(1),所以在上為增函數(shù),在上為減函數(shù),故函數(shù)的最大值為;(2)由(1)得極值點(diǎn)為,故,解得;(3)由于,故,由于,故,后面根據(jù)的正負(fù)進(jìn)行分類討論,由此求出實(shí)數(shù)的取值范圍為.
試題解析:
(1),
由,得;由,得
∴在上為增函數(shù),在上為減函數(shù),
∴函數(shù)的最大值為.
(2)因?yàn)?/span>,所以,
由(1)知,是函數(shù)的極值點(diǎn),又因?yàn)楹瘮?shù)與有相同極值點(diǎn),
∴是函數(shù)的極值點(diǎn),∴,解得
經(jīng)檢驗(yàn),當(dāng)時(shí),函數(shù)取到極小值,符合題意
(3)因?yàn)?/span>,,
∵,即,∴,
,,由(2)知,,
∴
∴在上,;當(dāng)時(shí),
∴在上為減函數(shù),在上為增函數(shù),
∵,,,而,
∴
∴,,
①當(dāng),即時(shí),對(duì)于,不等式恒成立
即,∵,
∴,由,得.
②當(dāng)時(shí),即,對(duì)于,不等式恒成立
即,
∵,∴
綜上所述,所求的實(shí)數(shù)的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo),且兩坐標(biāo)系取相同的長(zhǎng)度單位.已知點(diǎn)的極坐標(biāo)為,圓的極坐標(biāo)方程為,若為曲線上的動(dòng)點(diǎn),且到定點(diǎn)的距離等于圓的半徑.
(1)求曲線的直角坐標(biāo)方程;
(2)若過點(diǎn)的直線的參數(shù)方程為(為參數(shù)),且直線與曲線交于、兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐中,點(diǎn)在平面內(nèi)的射影在棱上,,底面是梯形,,且.
(1)求證:平面平面;
(2)若直線與所成角為60°,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個(gè)命題中:
①函數(shù)的一個(gè)對(duì)稱中心為;
②若, 為第一象限角,且,則;
③若,則存在實(shí)數(shù),使得;
④點(diǎn)是三角形所在平面內(nèi)一點(diǎn),且滿足,則點(diǎn)是三角形的內(nèi)心.
其中正確的序號(hào)是__________.(把你認(rèn)為正確的序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題p:關(guān)于x的不等式x2+2ax+4>0對(duì)于一切x∈R恒成立,命題q:x∈11,2], x2-a≥0,若p∨q為真,p∧q為假,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程并指出其形狀;
(2)設(shè)是曲線上的動(dòng)點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),過點(diǎn)動(dòng)直線與圓交與點(diǎn)兩點(diǎn).
(1)若,求直線的傾斜角;
(2)求線段中點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:+=1(a>b>0)的離心率為,且過點(diǎn)(1,).
(I)求橢圓C的方程;
(Ⅱ)設(shè)與圓O:x2+y2=相切的直線l交橢圓C與A,B兩點(diǎn),求△OAB面積的最大值,及取得最大值時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有兩枚大小相同、質(zhì)地均勻的正四面體玩具,每個(gè)玩具的各個(gè)面上上分別寫著數(shù)字1,2,3,5,同時(shí)投擲這兩枚玩具一次,記為兩個(gè)朝下的面上的數(shù)字之和.
(1)求事件“不小于6”的概率;
(2)“為奇數(shù)”的概率和“為偶數(shù)”的概率是不是相等?證明你作出的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com