【題目】給出下列四個命題中:
①函數(shù)的一個對稱中心為;
②若, 為第一象限角,且,則;
③若,則存在實數(shù),使得;
④點是三角形所在平面內(nèi)一點,且滿足,則點是三角形的內(nèi)心.
其中正確的序號是__________.(把你認為正確的序號都填上)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 中, 是的中點, , .將沿
折起,使點與圖中點重合.
(Ⅰ)求證:;
(Ⅱ)當(dāng)三棱錐的體積取最大時,求二面角的余弦值;
(Ⅲ)在(Ⅱ)的條件下,試問在線段上是否存在一點,使與平面所成的角的正弦值為?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出定義在上的兩個函數(shù),.
(1)若在處取最值.求的值;
(2)若函數(shù)在區(qū)間上單調(diào)遞減,求實數(shù)的取值范圍;
(3)試確定函數(shù)的零點個數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),已知在處的切線相同.
(1)求的值及切線的方程;
(2)設(shè)函數(shù),若存在實數(shù)使得關(guān)于的不等式對上的任意實數(shù)恒成立,求的最小值及對應(yīng)的的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓過定點,且與直線相切,橢圓的對稱軸為坐標(biāo)軸,點為坐標(biāo)原點,是其一個焦點,又點在橢圓上.
(1)求動圓圓心的軌跡的標(biāo)準(zhǔn)方程和橢圓的標(biāo)準(zhǔn)方程;
(2)若過的動直線交橢圓于點,交軌跡于兩點,設(shè)為的面積,為的面積,令的面積,令,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某加工廠需定期購買原材料,已知每公斤原材料的價格為1.5元,每次購買原材料需支付運費600元,每公斤原材料每天的保管費用為0.03元,該廠每天需要消耗原材料400公斤,每次購買的原材料當(dāng)天即開始使用(即有400公斤不需要保管).
(Ⅰ)設(shè)該廠每x天購買一次原材料,試寫出每次購買的原材料在x天內(nèi)總的保管費用y1關(guān)于x的函數(shù)關(guān)系式;
(Ⅱ)求該廠多少天購買一次原材料才能使平均每天支付的總費用y最少,并求出這個最少(。┲;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),函數(shù)與有相同極值點.
(1)求函數(shù)的最大值;
(2)求實數(shù)的值;
(3)若,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)求的單調(diào)區(qū)間和極值;
(2)求在上的最小值.
(3)設(shè),若對及有恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐中,底面為矩形,側(cè)面底面,,,.
(1)證明:;
(2)設(shè)與平面所成的角為,求二面角的余弦值的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com