【題目】如圖①是反映某條公交線路收支差額(即營運所得票價收入與付出成本的差)與乘客量之間關(guān)系的圖像.由于目前該條公交線路虧損,公司有關(guān)人員提出了兩種調(diào)整的建議,如圖②③所示:

給出下列說法:(1)圖②的建議:提高成本,并提高票價;(2)圖②的建議:降低成本,并保持票價不變;(3)圖③的建議:提高票價,并保持成本不變;(4)圖③的建議:提高票價,并降低成本.其中所有說法正確的序號是______

【答案】(2)(3)

【解析】

根據(jù)題意知圖像反應(yīng)了收支差額與乘客量的變化情況,即直線的斜率說明票價問題;當(dāng)的點說明公司的成本情況,再結(jié)合圖像進行說明。

根據(jù)題意和圖②知,兩直線平行即票價不變,直線向上平移說明當(dāng)乘客量為0時,收入是0但是支出變少了,即說明了此建議是降低成本而保持票價不變,故(2)正確;

由圖③看出,當(dāng)乘客量為0時,支出不變,但是直線的傾斜角變大,即相同的乘客量時收入變大,即票價提高了,即說明了此建議是提高票價而保持成本不變,故(3)正確.

故答案為(2)(3)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直三棱柱中,,,點的中點.

1)求異面直線,所成角的余弦值;

2)求直線與平面所成角的正弦值;

3)求異面直線的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某社區(qū)名居民參加年國慶活動,他們的年齡在歲至歲之間,將年齡按、、、分組,得到的頻率分布直方圖如圖所示.

1)求的值,并求該社區(qū)參加年國慶活動的居民的平均年齡(每個分組取中間值作代表);

2)現(xiàn)從年齡在、的人員中按分層抽樣的方法抽取人,再從這人中隨機抽取人進行座談,用表示參與座談的居民的年齡在的人數(shù),求的分布列和數(shù)學(xué)期望;

3)若用樣本的頻率代替概率,用隨機抽樣的方法從該地歲至歲之間的市民中抽取名進行調(diào)查,其中有名市民的年齡在的概率為,當(dāng)最大時,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù),.

1)求函數(shù)在點處的切線方程;

2)若對于任意,存在,使得,求的取值范圍;

3)若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】西北某省會城市計劃新修一座城市運動公園,設(shè)計平面如圖所示:其為五邊形,其中三角形區(qū)域為球類活動場所;四邊形為文藝活動場所,,為運動小道(不考慮寬度),,千米.

(1)求小道的長度;

(2)求球類活動場所的面積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為奇函數(shù),且,其中.

(1)求,的值.

(2)若,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點在正視圖上的對應(yīng)點為,圓柱表面上的點在左視圖上的對應(yīng)點為,則在此圓柱側(cè)面上,從的路徑中,最短路徑的長度為( )

A. B. C. D. 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用一張長為12,寬為8的鐵皮圍成圓柱形的側(cè)面,則這個圓柱的體積為_____;半徑為R的半圓形鐵皮卷成一個圓錐筒,那么這個圓錐筒的高是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中, , 平面,側(cè)面是正方形,點為棱的中點,點、分別在棱、上,且,

(1)證明:平面平面;

(2)若,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案